
Results

• M1’s handcrafted features-based signature (Equation 1)

• Simple and interpretable surrogate model (Equation 2) ⇒ Model interpretability

• Logistic regression performed using the coordinate descent algorithm ⇒ Algorithm transparency

⇒ Fully interpretable machine learning pipeline and model

• Thanks to the linear nature of the ROI-GAP and the decision function, no distortion of information occurred
when backprojecting the model’s coefficients at the voxel level. ⇒ Probabilistic quantification preserved

⇒ Our methodology identifies tumor sub-regions associated to the prediction task and thus permits to highlight
predictive patterns at the voxel level. ⇒ Voxel-level mapping of the model
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An original voxel-wise supervised analysis of tumors with
multimodal radiomics to highlight predictive biological patterns

Materials and Methods
• Publicly available dataset of 51 soft tissue sarcomas (STS) of the extremities containing FDG PET

(reconstruction: OSEM, median voxel size: 5.47 × 5.47 × 3.27 mm3, in-plane voxel size range:
3.91-5.47 mm) and CT images (voxel size: 9.8 × 9.8 × 3.27 mm3) from the same PET/CT machine
(GE Discovery ST), and clinical and follow-up information [1]

• 19/51 patients have developed lung metastases 2 years after the diagnosis.

• Voxel-based probabilistic supervised machine learning pipeline to predict the risk of lung metastasis
occurrence at 2 years (Figure 1: steps 1 to 5)
⇒ Radiomic model M1 (P = modelized probability of metastasis occurrence)

• Backprojection of the coefficients of M1 at the voxel level (Figure 1: step 6)
⇒ M1 handcrafted-radiomics CAM

• Radiomics CAM interpretation ⇒ identification of tumor sub-regions ⇒ feature engineering to define
simple features and build a radiologically interpretable surrogate model
⇒ Radiological model M2

• Detailed pipeline:

Background and Objectives
• Translation of predictive and prognostic image-based learning models to clinical

applications are challenging due in part to their lack of interpretability.
• Deep-learning-based Class Activation Maps (CAM) give information about the

regions driving the models.
• Yet, due to the high-level abstraction of deep features, deep CAM can be

unstable and difficult to interpret, and low sample size can lead to instabilities
and sub-optimal convergence for complex models such as CNN.

⇒ We propose and validate a method that combines the interpretability of
handcrafted radiomics with a voxel-wise analysis and facilitates the biological
interpretation of models.

• Radiomic model M1 showed higher classification
performance (ROC AUC) compared to conventional
biomarkers (Figure 2, Table 1).

• Radiomics CAM (Figure 3) highlighting the biologically
interpretable sub-regions that drive the model decision
⇒ Voxel-wise local interpretability

• By interpreting the radiomics CAM jointly with the PET
and CT images for all patients, we found out that the
model M1 (Equation 1) has captured patterns that can
be related to tumor necrosis, and high and localized
FDG uptakes in the tumor. These results are consistent
with [1] and the soft tissue sarcoma grading system
based on the biopsy [7].

• This made it possible to define a new feature reflecting
the volume of the tumor sub-region devoid of metabolic
activity (SUV < 40% SUVmax) or with reduced Hounsfield
units (< 20HU). This corresponds to suspected necrosis in
PET/CT.

• The simpler radiological model M2 (Equation 2) that we
built from the interpretation of M1 showed the 2nd best
performance, following M1 (Figure 2, Table 1).

PREDICTIVE
BIOMARKER 

MEAN (± 1 STD)
OOB ROC AUC 

Radiomic model M1 0.85 (± 0.09)
Radiological model M2 0.83 (± 0.08)

SUVmax 0.80 (± 0.09)
TLG 0.73 (± 0.11)

Anatomical Tumor Volume 0.69 (± 0.11)
MTV 0.60 (± 0.12)

Conclusions
• We describe a method based on locally-calculated handcrafted radiomic features

to highlight the sub-regions and biological signal driving the model predictions.
⇒ In a situation where the number of data is limited, we demonstrate how that

method makes it possible to spatially and quantitatively interpret radiomic models
and design simple and robust biomarkers amenable to a biological interpretation
for patient stratification.

• This approach is applicable to any question compatible with image-based
classification and prediction.
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Table 1: Mean (± 1 std) OOB ROC AUC of models M1, M2, and
conventional biomarkers.

Figure 2: OOB ROC AUC of models and biomarkers for predicting
lung metastasis 2 years after the diagnosis. Distribution of the 1000
bootstrap drawings. Due to the small size of the dataset and thus
models variance, differences between AUC did not reach p < 0.05
statistical significance (DeLong test p-value: 0.052 to 0.790).

M1 HANDCRAFTED-RADIOMICS CAM

FEATURE MAPS 
COMPUTATION

Voxel-wise computation of 
154 handcrafted radiomic 

feature maps using a 
93-voxel kernel with the IBSI

[2] compliant software 
Pyradiomics [3]

“ROI-GLOBAL-AVERAGE-
POOLING”

Average aggregation of 
voxels in each feature 

map within each tumor 
region to yield one global 

154-feature vector per 
patient (ROI-GAP) 

MULTICOLLINEARITY REDUCTION-
BASED FEATURE SELECTION

ROI-GAP feature selection by 
iterative removal of the ones 

with the highest Variance 
Inflation Factor (VIF) [4] until the 
max VIF in the feature set is < 10 

using the R package car [5]

LASSO REGULARIZED 
LOGISTIC REGRESSION

Grid-search (200 × 5 folds 
repeated stratified) cross-

validation tuning of the 
regularization term, and ROC 
AUC-based forward stepwise 

selection using the Python
package scikit-learn [6]

BAGGING FINAL MODEL
Bootstrap aggregation of the 
decision functions using 1000 

bootstrap drawings to build the final 
radiomic model M1, and 

comparison of the Out-Of-Bag 
(OOB) ROC AUC with usual 

biomarkers SUVmax, Metabolic 
Tumor Volume (MTV), Total Lesion 
Glycolysis (TLG), and Anatomical 

Tumor Volume (ATV)

BACKPROJECTION OF 
THE COEFFICIENTS

Backprojection of the 
regression coefficients

of M1’s bagging 
decision function at the 

voxel level 
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ASSOCIATED ABSTRACT:

Figure 1: Detailed pipeline of the radiomics CAM calculation.
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Figure 3: Axial slice examples of voxel-level model mapping with PET, CT, and
the radiomics CAM of the model M1 for two patients. Yellow arrows indicate the
M1-highlighted biological patterns : localized high FDG uptakes, homogeneous
inactive region, tumor hypodensities.
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