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Background and Objectives BIOMARKER O0B ROC AUC — S
- Radiomic model M1 showed higher classification Radiomic model M1 0.85 (£ 0.09) = NIV
- Translation of predictive and prognostic image-based learning models to clinical P?”O"TLG"CG. (ROE AUC) compared fo conventional Radiological model M2 0.83 ( 0.08) + :fT{:iiomicIocal-globalmodel -
applications are challenging due in part to their lack of interpretability. biomarkers (Figure 2, Table ). SUVmax 0.80 (% 0.09) — Radiological model (2
e D | : 5 d C| AT M CAM : inf i bout th - Radiomics CAM (Figure 3) highlighting the biologically TLG 0.73 (£ 0.11) — logi(hypodense U inactive volume)
e§p— ear.nl.ng— SSE ass Activation Maps | ) give information about the interpretable sub-regions that drive the model decision Anatomical Tumor Vol 0.69 (£ 011 3.
regions driving the models. = Voxel-wise local interpretability natomica’ THmor Yorume 69 (£ 0.11) , - e
. . MTV 0.60 (£ 0.12) 2 o, =] SUVmax = 26.6
« Yet, due to the high-level abstraction of deep features, deep CAM can be - By interpreting the radiomics CAM jointly with the PET Table 1 Mean (= 1 s1d) OOB ROG AUG of models M1, M. and § ' '
Sere . . . et . . able 1: Mean (+ 1 s of models M1, , an 2
unstable and difficult to interpret, and low sample size can lead to instabilities O”dd ?TAA'TOESJGS fTQr 0%' DhOT'e”TS' TWG (;OUHS OUTTTthTT fhe ventional biomarkers. e
and sub-optimal convergence for complex models such as CNN. model M1 (Equation 1) has captured patferns thaf can
be related to tumor necrosis, and high and localized
= We propose and validate a method that combines the interpretability of FDG uptakes in the tfumor. These results are consistent - 0627 (x 0.601) * PET_original_glem _ClusterShade
nand fted radiomi A Wi e A Cralleias e [selles Resl with [1] and the soft tissue sarcoma grading system - 0.548 (+ 0.546) * CT_original_gicm_Correlation
interpretation of models. +2.76 (x 0.895) * PET original_fo_Skewness
- This made it possible to define a new feature reflecting - 158 (+ 0.690) * PET original_gldm_SmallDepLowGrayLevelEmphasis
the volume of the tumor sub-region devoid of metabolic - 1.31 (¢ 0.771) * PET original_gldm_GrayLevelNonUniformity SUV a5 o
: activity (SUV < 40% SUVmax) or with reduced Hounsfield - 0667 (+ 0.539) 0l —— : - - e
Materlals and MethOds units (< 20HU). This corresponds to suspected necrosis in Equation 1. Decision function of the bagging logistic model M1 0.0 0.2 04 06 . . PET CT RADIOMICS CAM (M1)
. . . N o PET/CT. with standard deviation of the coefficients. ROC AUC
* Publicly CIVC!I|C1b|e dataset Of 51 soft fISS.UG sarcomas (STS) of the exfrgmlfles CO”TO'”'”Q FDG PET . . . . » Figure 2: OOB ROC AUC of models and biomarkers for predicting  Figure 3: Axial slice examples of voxel-level model mapping with PET, CT, and
(reconstruction: OSEM, median voxel size: 5.47 x 5.47 x 3.27 mm3, in-plane voxel size range: * The simpler radiological model M2 (Equation 2) that we + 152 (x 0.803) * SUVmax o lung metastasis 2 years after the diagnosis. Distribution of the 1000  the radiomics CAM of the model M1 for two patients. Yellow arrows indicate the
3.91-5.47 mm) and CT images (voxel size: 9.8 x 9.8 x 3.27 mm3) from the same PET/CT machine built from the interpretation of M1 showed the 2nd best + 0.809 (¢ 0.577) * log1ohypodense v inactive volume) bootstrap drawings. Due to the small size of the dataset and thus ~ M1-highlighted biological patterns : localized high FDG uptakes, homogeneous
(GE Discovery ST), and clinical and follow-up information [1] performance, following M1 (Figure 2, Table 1). - 0.126 (+ 0.255) models varian?e, diffe(rences between AUC did not reach p < 0.05 inactive region, tumor hypodensities.
Equation 2. Decision function of the bagging logistic model M2 statistical significance (Delong test p-value: 0.052 to 0.790).
- 19/51 patients have developed lung metastases 2 years after the diagnosis. * M1's handcrafted features-based signature (Equation 1) with standard deviation of the coefficients.
- Voxel-based probabilistic supervised machine learning pipeline to predict the risk of lung metastasis * Simple and interpretable surrogate model (Equation 2) = Model interpretability Conclusions
occurrence at 2 years (Figure 1:steps 110 ) - Logistic regression performed using the coordinate descent algorithm = Algorithm fransparenc . ‘ fomi
= Radiomic model M1 (P = modelized probability of metastasis occurrence] g g 2 g g g P y We .des.crlbe a me’rhod.bosed on .Iocaloly-caolcula’rec.:l r\andcraﬁed radlorr.nc. features
= Fully interpretable machine learning pipeline and model to highlight the sub-regions and biological signal driving the model predictions.
* Backprojection of the cc?efhf:lents of M1 at the voxel level (Figure 1: step ¢) « Thanks to the linear nature of the ROI-GAP and the decision function, no distortion of information occurred = In a situation where the number of data is limited we demonstrate how that
= M1 handcrafied-radiomics CAM when backprojecting the model’s coefficients at the voxel level. = Probabilisti ntification preserved : : : o . :
projecting - = Frobabllistic quantiication preserve method makes it possible fo spatially and quantitatively interpret radiomic models
- Radiomics CAM interpretation = identification of tumor sub-regions = feature engineering to define = Our methodology identifies tumor sub-regions associated to the prediction task and thus permits to highlight and design simple and robust biomarkers amenable to a biological interpretation
simple features and build a radiologically interpretable surrogate model predictive patterns at the voxel level. = Voxel-level mapping of the model for patient stratification.
= Radiological model M2
 This approach is applicable to any question compatible with image-based
. Detailed pipeline: M1 HANDCRAFTED-RADIOMICS CAM < : classification and prediction.
=
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Figure 1. Distributions of the 1000 bootstrap ROC AUC of OOB
models' predictions and imaging biomarkers
for predicting lung metastasis 2 years after diagnosis.

decision function (ROI masked)

decision function (ROI masked) decision function (ROI masked) decision function (ROI masked)

-0.9
Status: metastatic

Figure 2. Axial slices examples of voxel-level model mapping.
First row: FDG PET, second row: CT, third row: radiomics CAM.

Arrows indicate the biological patterns highlighted by the radiomics CAM:
Yellow: high FDG uptakes, blue: homogeneous inactive regions, pink: tumoral hypodensities.
P: predicted probability of developing lung metastasis within two years after diagnosis.

A: patient 17 (True positive: Metastatic, P=0.72),

B: patient 9 (True positive: Metastatic, P=0.94),

C: patient 18 (False negative: Metastatic, P=0.10),

D: patient 49 (True negative: Non metastatic, P=0.12),
E: patient 7 (True negative: Non metastatic, P=0.08).
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- 0.627 (+ 0.601) * PET _original_glcm_ClusterShade
- 0.548 (+ 0.546) * CT_original_glcm_Correlation
- 0.550 (+ 0.782) * PET _original_glcm_InverseVariance

+ 276

+

(+ 0.895) * PET_original_fo_Skewness

1.58 (+ 0.690) * PET_original_gldm_SmallDepLowGraylLevelEmphasis
1.31 (x 0.771) * PET_original_gldm_GrayLevelNonUniformity

0.667 (+ 0.539)

Equation 1. Decision function of the bagging logistic model M1
with standard deviation of the coefficients.
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1.52 (¢ 0.803) * SUVmax

+ 0.809 (+ 0.577) * log1o(hypodense U inactive volume)
- 0.126 (+ 0.255)

Equation 2. Decision function of the bagging logistic model M2
with standard deviation of the coefficients.
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Figure 3. Bagging radiological model M2's logistic regression decision surface

and overlayed 2-features z-score standardized scatter plot.
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