
Prognostic and Predictive Feature Selection for
Oesophageal Cancer Using Random Forest

Classifier

Desbordes, P.1,2, Modzelewski, R.1,3, Ruan, S.1, Pineau, P.2,
Vauclin, S.2, Vera, P.1,3, and Gardin, I.1,3

1 Litis - QuantIF - EA4108, University of Rouen, France
2 Dosisoft, Cachan, France;

3 Henri Becquerel Center, Rouen, France

Abstract. Prediction of cancer evolution is an important issue for adap-
tation and evaluation of a therapy. Many features can be extracted from
PET images to describe cancer. However which ones are relevant for pre-
diction? In this paper, we propose a feature selection strategy based on
random forest to select features having a prognostic or predictive value
among a large amount of different kinds of characteristics. Our method is
performed in 3 steps. First, a Spearman rank correlation is carried out to
keep uncorrelated features. Then, a random forest algorithm is applied
to find the most relevant subset of features. Our method is evaluated
on a PET database of 66 patients with an oesophageal cancer using two
classifiers: support vector machine and random forest. Results show an
improvement of the classification accuracy in a range of [4.2 to 16.5%]
compared to when using all features without selection. These results are
compared with a classical feature selection method (SVM-SFFS) show-
ing that our method gives better results than SVM-SFFS.
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· Random Forest · 18FDG PET

1 Introduction

18FDG PET (Positron Emission Tomography with 18-fluorodeoxyglucose) nor-
malized by Standard Uptake Value (SUV), is now widely used for diagnosing,
staging and monitoring response to therapy in oncology [1]. Predictive and prog-
nostic studies using image features derived usually from first order statistics, such
as MTV (Metabolic Tumour Volume) or TLG (Total Lesion Glycolysis), have
also been carried out. In solid tumours, predictive and prognostic values were
found for these features [2].

More recently, for describing 18FDG uptake heterogeneity within the lesion
other features have been proposed. For instance, Bundschuh et al. have found
that the COV (Coefficient Of Variation) is an important predictive factor in
patients with rectal cancer, better than conventional features [3]. El Naqa et



al. have proposed to extract features from the SVH (SUV-Volume Histogram
[4]), such as SUVx (minimum SUV of the x% highest SUV) and Vx (percentage
volume having at least x% of SUV). Furthermore in this paper, El Naqa et al.
found that features extracted from the GLCM (Gray-Level Cooccurrence Ma-
trix [5]), characterizing the intensity relationships between pairs of neighbouring
pixels, are some of the most important predictive characteristics in cervix can-
cer. Other texture matrices have also been proposed in the literature, such as
the GLDM (Gray Level Difference Matrix [6]) characterizing the intensity dif-
ferences between neighbours, the GLRLM (Gray Level Run Length Matrix [7])
and the GLSZM (Gray Level Size Zone Matrix [8]) characterizing the size ranges
of intensities in a direction or in all the directions respectively. At the end, it is
possible to extract several features by matrix leading to a large number of char-
acteristics. As far as we know, Tixier et al. [9] are the only ones who studied the
importance of a large number of PET image features on oesophageal cancer us-
ing ROC (Receiver Operating Characteristic) curves measuring associated AUC
(Areas Under the ROC Curves), including texture features. Among 38 features
they found that GLCM features (second angular moment, local contrast, en-
tropy, correlation, homogeneity and dissimilarity) and GLSZM features (ZLNU,
GLNUz) are relevant to predict patients’ response to CRT (Chemo RadioTher-
apy).

Using all the extractable characteristics from images does not improve accu-
racy, but may be responsible for information redundancy disturbing classifier.
Orlhac et al. [13] have shown that some texture characteristics are highly corre-
lated with MTV on three types of tumour. In the same way, Tixier et al. [9] have
shown that GLRLM features are highly correlated with GLSZM ones, and so,
do not bring complementary information. Usually, classical statistics are used
to assess the importance of each feature for the prediction [2]. Because of the
high number of studied characteristics and the nonlinear pattern relationships
between features these mathematical tools are not powerful enough. Another
possibility is to use a classifier to identify to which set of categories (i.e. respon-
der or non-responder) a new patient belongs. In this context, methods using
machine learning could be of great interest due to their ability to manage many
features and to capture nonlinear pattern relationships as well as providing a
better discriminant power than classical statistics when analysing several tens
of features [4].

To date, many feature selection methods have been developed. Globally, three
types of feature selection methods can be distinguished: ”filter”, for which a
model design method is not needed; ”wrapper” methods, which include the pre-
diction performance in the score calculation; and, finally, ”embedded” methods
which combine variable selection and model estimation more closely [10].

Although classification using Random Forest algorithm (RF) has shown its
good performances [11] [12], it has not been yet used in the context of PET



imaging as far as we know. In this paper, we propose a feature selection strategy
based on the RF to find prognostic and predictive values of initial PET features
in patients after CRT for oesophageal cancer on a database of 66 patients. This
feature selection strategy is studied using two classifiers’ performances: SVM
(Support Vector Machine) and RF. This paper is organized as follows: Section
2 introduces the protocol used to extract characteristics and to perform the
feature selection strategy. Section 3 presents the experimental results on patients’
database followed by a discussion in Section 4.

2 Method

Our approach consists of feature extraction, feature selection and determination
of features having a prognostic and/or predictive value.

2.1 Feature Extraction

Forty-seven features (Table 1) were extracted from PET images according to the
following workflow. First, the MTV is defined by using a contrast-based adaptive
threshold algorithm [14]. Nineteen first order features are extracted from SUV,
MTV, TLG, COV, SVH [4] and sphericity [15].
Secondly, twenty-eight texture parameters are extracted from 3 texture matrices
- GLCM, GLDM and GLSZM, leading to 12 features for GLCM, 5 for GLDM
and 11 for GLSZM. To compute these matrices a linear gray-level resampling
is applied on the MTV according to [13] (Eq. 1) - leading to a tumour volume
image with 64 gray-levels:

R(i) = 64× SUV(i)− SUVmin

SUVmax − SUVmin
(1)

where R(i) is the new intensity of voxel i after the resampling process. To
compute GLCM we used 13 matrices, one for each spatial direction, followed by
averaging the values calculated separately in each matrix [16]. Finally, 13 clinical
features are extracted from the medical record.

2.2 Feature Selection Strategy

The feature selection strategy is composed of three steps. In the first one, a cor-
relation analysis is done on all 60 features using a Spearman rank correlation.
Then, a ranking of the most important features is done using a RF algorithm.
Finally, the best subset of features is detected thanks to the RF. Thus, the fea-
ture selection method is an embedded one because it combines variable selection
and classification.

For the first step, a correlation analysis based on a Spearman rank corre-
lation is done in order to keep uncorrelated features. Features are compared
one by one and are considered as significantly correlated if the absolute value



Table 1. List of the initial tumour features

Kind of features Characteristics

Clinical

Age, Gender,
Albumin level (g/l), NRI (Nutritional Risk Index), Malnutrition∗,
Initial weight (kg), Normal weight (kg), Weight loss (%),
Tumour location (up, mid, low), Histology (ADC or SCC),
TNM stage, WHO stage,
Endoscopic tumour length (cm)

First Order

SUVmax, SUVmean, SUVpeak,
MTV, Sum of SUV, TLG, Standard Deviation (SD), COV,
Sphericity, Skewness, Kurtosys, Energy, Entropy,
SUV10, SUV90, SUV10-SUV90, V10, V90, V10-V90

Texture∗∗

GLCM : Energy, Entropy, Correlation, Dissimilarity, Contrast,
Homogeneity, Variance, Mean, Cluster Shade, Cluster Tendency,
Intensity, Inverse variance

GLSZM : Short Zone Emphasis (SZE), Long Zone Emphasis (LZE),
Low Gray level Zone Emphasis (LGZE), High Gray-level Zone
Emphasis (HGZE), Short Zone Low Gray-level Emphasis (SZLGE),
Long Zone Low Gray-level Emphasis (LZLGE), Short Zone High
Gray-level Emphasis (SZHGE), Long Zone HighGray-level
Emphasis (LZHGE), Zone Percentage (ZP), Gray Level Non
Uniformity (GLNUz), Zone Length Non Uniformity (ZLNU

GDLM : Busyness, Coarseness, Complexity, Contrast, Strength
∗ absence if NRI > 97.5, average if 83.5 ≤ NRI ≤ 97.5 and severe if NRI < 83.5
∗∗ Mathematical expression of features in Table 1 of supplemental data from [13]

of the Spearman correlation coefficient (sp) is higher than 0.8 and p − value
smaller than 0.05 [13]. Correlated features are placed in a group verifying these
parameters. The mean |sp| value and the associated Standard Deviation (SD)
were calculated for each group. In each correlation group the selected feature
to represent the group is the one that is the most practical to be calculated in
clinical routine. The total number of selected features is limited to the number
of groups plus the other uncorrelated features.

The second step consists in a selection of the most relevant features among
the remaining features using the RF algorithm. RF is a machine learning tech-
nique developed by Breiman [17] to classify data using a set of decision trees. A
multitude (k) of trees is built from an initial sample corresponding to N patients
with F studied features, represented by a matrix of size (N , F ). For each tree
node f features are randomly pulled among the F features (f is equal to rounded√
F , [11]). One of RF intrinsic properties allows assessing the importance of each

feature thanks to the computation of the OOB (Out Of Bag) error (%). Here,
the OOBt

err is the misclassification rate using a test sample OOBt (data not



included in the boostrap sample used to construct a t tree). Then, a X feature is

randomly permutated in OOBt to get a perturbed sample denoted by (ÕOBt to

compute ÕOBt
err, the error of the t tree with the perturbed sample. The score

of importance (Ci) of the X feature is then equal to:

Ci =
1

k

∑
t

(ÕOBt
err −OOBt

err) (2)

where the sum is over all t trees of the forest and k denotes the number of RF
trees. Greater the error is, more important the feature is. This step is performed
for all features in order to obtain a ranking of features.

Finally, classification using RF is performed recursively with an increasing F
number of features, in order to define the best prognostic and predictive subset.
In this paper, only results with F varying from 1 to 10 are studied. Those with
F > 10 are not considered as relevant. For each iteration a new feature is added
according to the feature ranking obtained previously.
To assess the classification error of the RF algorithm a K-fold Cross Validation
protocol is used, with K = 5. The number and the list of features leading to the
best classification (i.e. lower error) are found this way.

2.3 Classification

Two classifiers are used to evaluate the performances of the feature selection
strategy: RF and SVM. SVM [18] is a supervised method which constructs a
hyperplane by maximizing distance to the nearest training data points of any
class. A Gaussian RBF (Radial Basis Function) is chosen as kernel function [19].
The RBF kernel has 2 parameters to be determined in order to optimize the
classification performances: the kernel parameter σ and the error punishment
parameter c. Different values of these parameters were tested to find the most
suitable. A K-fold Cross Validation protocol with K = 5 is used again to assess
performance of the classifiers (RF and SVM).

3 Results

3.1 Tumour Features

In this retrospective study, data from 66 patients with an oesophageal cancer eli-
gible for CRT are used to test the feature selection strategy. All the pre-treatment
FDG PET images come from the same Nuclear Medicine Department on a Bi-
ograph Sensation 16 device (Siemens, Erlangen, Germany). PET images are
acquired from the base of the skull to the proximal thighs after a dose injection
of 5 MBq/kg of 18FDG, 60 minutes before the exam. Images are reconstructed
with attenuation correction using the CT-derived data and attenuation-weighted
ordered-subsets expectation maximization (AW-OSEM) algorithm. The voxel



size is 4 x 4 x 2 mm3. To assess therapeutic response of patients the gold stan-
dard was based on the entire set of clinical, endoscopic, histological, and imaging
data from the follow up. Complete metabolic response was detected in 41 pa-
tients (62%), whereas the histological proof of relapse was obtained in 25 patients
(38%). These data are used for the predictive study. The overall survival, used for
the prognostic study, was estimated after a follow-up of one year after the end of
the CRT. Sixteen patients died (24%) and 50 were alive (76%). The mean MTV
was 542.9 ± 629.7 cm3 (76 – 4272 cm3) and the mean SUVmax was 12.8 ± 9.2
(1.4 - 73).

3.2 Correlation

Results of the Spearman analysis are given in Table 2. Concerning clinical data,
normal weight and current weight are correlated (|sp| > 0.96). Likewise for
the albumin level, the NRI and malnutrition which are highly correlated (|sp| >
0.84). This last result can be explained by the fact that the NRI and malnutrition
are derived from the albumin level. Nevertheless, none of the clinical data are
correlated with the studied image characteristics. Only few image features are
not correlated: sphericity, COV, cluster shade (GLCM), ZP (GLZLM) and V10.
At the end of this correlation study, 12 groups of significant correlated features
(|sp| ≥ 0.8, p < 0.05) were identified leading to a first selection of 30/60 features
(in bold in Table 2).

Table 2. Groups of correlated features with the mean absolute value of the Spearman
correlation coefficient per group and associated SD. The feature of each group selected
for the next step is in bold

Group Correlated Spearman coefficient
indices absolute value

1 Current weight - Usual weight 0.96
2 Albumin level - NRI - Malnutrition 0.90 ± 0.06
3 V90 - V10-V90 0.99
4 SUVmax - SUV10 - SUVpeak - SUVmean 0.94 ± 0.04

- SD (1st order) - SUV90 - SUV10-SUV90

5 MTV - Entropy (GLCM) - Energy (GLCM)- ZLNUz 0.93 ± 0.04
- Correlation (GLCM) - GLNUz - sumSUV - TLG
- Complexity - Contrast (GLDM) - Strength

6 Skewness - Kurtosys - Mean - Intensity 0.90 ± 0.05
7 Variance - Cluster Tendency 0.81
8 SZE - LZE 0.89
9 HGZE - SZHGE 0.94
10 LGZE - SZLGE - LZLGE 0.90 ± 0.08
11 Energy (1st order) - Entropy (1st order) - LZHGE 0.92 ± 0.06
12 Homogeneity - Dissimilarity - Inverse Variance 0.95 ± 0.03

- Contrast



3.3 Feature Selection by Random Forest

The number of trees (k) is initialized to 500 to build the RF algorithm, higher
values than 500 have been also tested and no significant difference was observed.
An initial matrix with 66 rows (N , patients) and 60 columns (F , features) is built.
Each tree of the forest is created based on a bootstrap of 66 patients randomly
picked with replacement, and for each node of this tree the best feature is selected
among 8 features picked randomly among F (f =

√
F ). After the second step,

rankings of the 10 most relevant features of the prognostic and predictive studies
given by the random forest analysis are presented (Table 3).
According to the RF classification, the minimum prognostic error is obtained
using the 3 best features of the ranking: cluster shade (GLCM), homogeneity
(GLCM, group 12) and ZP (GLSZM) leading to an error equal to 19.8%. The
minimum predictive error is equal to 23.1% and is obtained with the 4 best
features of the ranking: ZP (GLSZM), MTV, weight loss and energy (1st order,
group 11).

Table 3. Rankings of the most important prognostic and predictive features using RF∗

Prognostic Predictive
features features

1 Cluster Shade (GLCM) ZP (GLSZM)
2 Homogeneity (GLCM) (grp 12) MTV (grp 5)
3 ZP (GLSZM) Weight loss
4 HGZE (GLSZM) (grp 9) Energy
5 N stage Lower third location
6 MTV Homogeneity (GLCM) (grp 12)
7 Energy (1st order) WHO stage
8 Albumin level M stage
9 Histology Weight
10 Weight loss Tumour length
∗ correlation group is indicated if necessary

3.4 Classification Results

Results of classifications obtained with RF and SVM are given in Table 4. Perfor-
mances of these classifications are assessed after each step of the feature selection:
step 0 before any selection, step 1 after the correlation analysis and step 2 at
the end of the selection using the RF algorithm. The values of parameters σ and
c optimizing SVM algorithm are also given in Table 4. The 2 best classification
results are obtained after the feature selection strategy for RF and SVM; respec-
tively. Among these classifiers, it is SVM which gives the best final result. For
the prognostic study, the corresponding minimum error is equal to 13.7% with
σ = 0.5 and c = 0.5 (3 features: cluster shade (GLCM), homogeneity (GLCM)



and ZP (GLSZM)). The minimum predictive error is equal to 20% with σ = 16
and c = 64 (4 features: ZP (GLSZM), MTV, weight loss and energy (1st order)).

To evaluate our feature selection strategy, our results are compared with those
obtained with the wrapper method called SFFS (Sequential Forward Floating
Selection [20]). This method considers the feature selection as a search problem,
where the selection criterion is based on the classification performance. SVM is
used as a classifier with a K-fold cross validation (K = 10). The SVM-SFFS
method selected ZP (GLSZM), cluster shade (GLCM) and weight loss as the 3
best prognostic features. A SVM classification done with these features leads to
a classification error of 25.7%. In the same way for the predictive study, the 4
features selected by the SVM-SFS are ZP (GLSZM), albumin level, MTV and
weight loss, leading to a classification error of 24.2%. Compared to the SVM-
SFFS method, our method gives better results.

Table 4. Prediction errors with two classifiers (SVM and RF) according to the feature
selection step

```````````Method
Characteristics n Step 0 Step 1 Step 2 Improvement

n = 60 n = 30 n < 10 Step 2 - Step 0

Prognostic

RF 36.3% 27.4% 19.8% (n = 3) -16.5%

SVM∗ 24.2% 24.2% 13.7% (n = 3) -10.5%
σ = 1, c = 1 σ = 1, c = 1 σ = 0.5, c = 0.5

Predictive
RF

34.7% 27.3% 23.1% (n = 4) -11.6%

SVM∗ 24.2% 24.2% 20% (n = 4) -4.2%
σ = 1, c = 1 σ = 1, c = 1 σ = 16, c = 64

∗ σ and c parameters are those optimizing SVM

4 Discussion

A feature selection strategy in three steps is proposed, showing an improvement
of the prediction of PET image features through 2 classifiers (SVM and RF).
To our knowledge, this work is one of the first using machine learning to find
predictive and prognostic features from FDG PET images. It is now well estab-
lished that first order features extracted from FDG PET images (SUV, MTV,
TLG) have a predictive and a prognostic value [2]. These features are clinically
used to choose or to modify treatment. More recently, it has been shown that
texture features could also be interesting [4] even if some issues still remain. A
high number of texture characteristics can be extracted from PET images but
they are not all relevant. Indeed, some of them are correlated [13] and it has been
shown that relevant features depend on the type of tumour [16]. Furthermore, in
oncology it is difficult to have an important patient database in order to obtain



robust knowledge. Therefore, feature selection strategy is a prerequisite to find
predictive and prognostic features among several tens.

At first, a Spearman correlation analysis is done in order to keep uncorrelated
features [13]. Tixier et al. [9] have shown on an oesophageal cancer database that
GLRLM features are highly correlated with GLSZM ones. Therefore GLRLM
features are not integrated in this study in order to limit the number of features.
The results shown in Table 2 are similar with those in [13] on three other types
of cancer and the created correlation groups are almost the same. These results
tend to show that correlations are similar for all the type of tumour. Neverthe-
less, at first it has to be verified for each new type of cancer. These correlations
can explain different results found in the literature. For instance, energy and en-
tropy (1st order) are correlated (|sp| = 0.92) leading to similar outcomes in [4].
Using ROC curves and measuring associated AUC, El Naqa et al. have found
that energy and entropy have respectively an AUC of 0.50 and 0.53 for head
& neck cancer, and 0.72 and 0.65 for cervical cancer. Table 4 shows that the
reduction to 30/60 features after the first step improves the classification per-
formances. Indeed, as redundant data are eliminated, the information available
in the 60 initial features is denoised.

After the second step of the feature selection, we notice that a subset of
3 texture characteristics (cluster shade, homogeneity (groups 12) and ZP) give
the best prognostic performances. It shows that image features bring important
information for the evaluation of the disease. The same conclusions with the pre-
dictive study can also be obtained. We notice that one texture feature (ZP) and
two first order features (MTV and energy) are included among the 4 features
used for the classification. They are associated with one clinical characteristic
(weight loss). The feature selection impact on the improvement of the classi-
fication performances is higher with RF (-16.5% for the prognostic study and
-11.6% for the predictive) than with SVM (-10.5% and -4.2% respectively, see
Table 4). This result could be explained by the fact that the same algorithm is
used during the feature selection strategy and the RF classification while it is
not the case with SVM. Nevertheless, the best performances are obtained using
SVM after applying the feature selection strategy.

Only few results were published concerning prognostic features in oesophageal
cancer. Classical 1st order features (SUV, MTV, TLG) have been studied by
Hatt et al. [21]. They have found that MTV, TLG and tumour length have a
prognostic value using Kaplan-Meier survival methods and ROC curves. With
our strategy, MTV is highly correlated to TLG (group 5). This feature appears
at the 6th place in the ranking and was not used during the classification due
to the fact that best results were found using only 3 features. In [16], Hatt et
al. have studied texture parameters: entropy and dissimilarity from the GLCM,
ZP and LZHGE from the GLSZM. They have found that only the dissimilarity
(GLCM) is relevant. From our study, this feature (from group 12 represented by



homogeneity) is also one of the most relevant (2nd place in the ranking, see Table
3). On the other hand, we have found that ZP (GLSZM) is the 3rd most relevant
feature while it was not found as relevant in [16]. These result discrepancies can
be attributed to the difference of patient populations between both studies.
Concerning best predictive features, in [2], Van de Wiele et al. have found that
MTV and classical 1st order features are relevant. Similar conclusions are ob-
tained in our results where MTV ranks 2nd place, but the importance of the
SUV does not appear in our study. This difference could be due to the presence
of more relevant features in our analysis, such as texture parameters. In [9], Tix-
ier et al. found that among 38 texture features studied using AUC measuring
on ROC curves, a high predictive value was found using the GLCM features
(second angular moment, local contrast, entropy, correlation, homogeneity and
dissimilarity). They found similar conclusions concerning the variability in the
size (ZLNU) and the intensity (GLNUz) of identified homogeneous tumour zones
from GLSZM. In our study, ZLNU and GLNUz are correlated with the MTV
(group 5). This group was statistically significant to predict therapy response
(2nd place in the ranking), but we do not detect a particular predictive im-
portance for GLCM features. Group 12, with homogeneity, dissimilarity and
contrast, is only 6th place in the predictive ranking.

The comparison of our results with those obtained by a well-recognized
method (SVM-SFSS, [20]) shows that our feature selection strategy is more
efficient. Indeed, if we look at SVM results our feature selection strategy gives
better results than the SFFS one: prognostic error of 13.7% versus 25.7%, and
20% versus 24.2% for the predictive error. Utilization of the RF in our method,
gives a resistance to noise of training data but the Spearman correlation, study-
ing the features 2 by 2, can be tiresome. To face this drawback, a development
of an automation of the 3 steps of our strategy could be a solution.

5 Conclusion

The use of machine learning is helpful in studying combinations of PET im-
age features and clinical data. We have demonstrated that a feature selection
strategy can improve classification performances in a range of [4.2 to 16.5%]
compared to those using all features without selection.

One of the problems in the medical field is that usually only a small number
of data are available, making classifier training difficult. The proposed feature
selection strategy presents a real improvement by using RF intrinsic property.
Indeed, the capacity to create a ranking of studied features in order to know
the importance of each feature in the classification is a good advantage versus
classical statistical methods. In the future, our method will be tested on a larger
cohort and on different cancers such as lung cancer and lymphoma.
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