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Vauclin Sébastien Vera Pierre Gardin Isabelle

PII: S0895-6111(16)30132-X
DOI: http://dx.doi.org/doi:10.1016/j.compmedimag.2016.12.002
Reference: CMIG 1486

To appear in: Computerized Medical Imaging and Graphics

Received date: 29-4-2016
Revised date: 10-10-2016
Accepted date: 16-12-2016

Please cite this article as: Desbordes Paul, Ruan Su, Modzelewski Romain,
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Highlights : 
 

• We propose a new feature selection strategy in two steps 
called GARF (Genetic Algorithm based on Random Forest) to 
select the most relevant subset of features from a large amount 
of characteristics extracted from positron emission tomography 
images and clinical data. 

 
• A genetic algorithm is used to perform this selection 

according to a new multiparametric fitness function depending 
on a random forest misclassification rate, areas under receiver 
operating characteristic curves and a sparsity constraint. 

 
• Experimental results show that excellent performances are obtained by our feature selection 

strategy compared to those obtained by 3 other methods. 
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Vera Pierrea,c, Gardin Isabellea,c

aLitis - QuantIF, University of Rouen, 22, boulevard Gambetta, 76000 Rouen, France
bDosisoft, 45/47, avenue Carnot, 94230 Cachan, France

cHenri Becquerel Centre, 1, rue d’Amiens, 76038 Rouen Cedex France

Abstract

The outcome prediction of patients can greatly help to personalize cancer treat-

ment. A large amount of quantitative features (clinical exams, imaging . . . )

are potentially useful to assess the patient outcome. The challenge is to choose

the most predictive subset of features. In this paper, we propose a new feature

selection strategy called GARF (Genetic Algorithm based on Random Forest)

extracted from Positron Emission Tomography (PET) images and clinical data.

The most relevant features, predictive of the therapeutic response or which are

prognoses of the patient survival 3 years after the end of treatment, were selected

using GARF on a cohort of 65 patients with a local advanced oesophageal cancer

eligible for chemo-radiation therapy. The most relevant predictive results were

obtained with a subset of 9 features leading to a random forest misclassification

rate of 18 ± 4% and an Areas Under the of Receiver Operating Characteristic

(ROC) Curves (AUC) of 0.823 ± 0.032. The most relevant prognostic results

were obtained with 8 features leading to an error rate of 20 ± 7% and an AUC of

0.750 ± 0.108. Both predictive and prognostic results show better performances

using GARF than using 4 other studied methods.

Keywords: Feature Selection, Oesophageal cancer, Random Forest, Genetic

Algorithm, Radiomics
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1. Introduction

Outcome prediction is the foundation for tailoring and adapting a treatment

planning in cancer therapy. Medical imaging plays a fundamental role in as-

sessing the response to a treatment. In oncology, the Standard Uptake Value

(SUV) of 18-FluoroDeoxyGlucose (FDG) measured by PET is widely used for5

diagnosing, staging and monitoring response to therapy [1]. Predictive (predic-

tion of treatment response) and prognostic studies (prediction of the survival)

using image features derived from 1st order statistics, such as Metabolic Tumour

Volume (MTV) or Total Lesion Glycolysis (TLG: SUVmean × MTV), have been

carried out. In solid tumours, predictive and prognostic values were found for10

these features [1].

More recently, other features have been proposed for describing 18FDG up-

take heterogeneity within the lesion. This heterogeneity would be representative

the aggressiveness of the tumour. El Naqa et al. [2] have proposed to extract

features from the SUV-Volume Histogram (SVH), such as SUVx (minimum15

SUV of the x% highest SUV) and Vx (percentage volume having at least x% of

SUV). These features were found to be relevant in studies of cervix and head

and neck cancers. Furthermore, in this paper, El Naqa et al. have found that

texture indices extracted from the Gray-Level Cooccurrence Matrix [3] (GLC

matrix), characterising the intensity relationships between pairs of neighbouring20

pixels, are some of the most important predictive characteristics in cervix can-

cer. Other texture matrices have also been proposed in the literature, such as

the Gray Level Difference Matrix [4] (GLD matrix) characterising the intensity

differences between neighbours, the Gray Level Run Length Matrix [5] (GLRL

matrix) and the Gray Level Size Zone Matrix [6] (GLSZ matrix) characterising25

the size ranges of intensities in one direction or in all the directions respectively.

At the end, it is possible to extract several texture indices per matrix leading

to a large number of characteristics.

Tixier et al. [7] studied the predictive value of 38 features, including tex-

ture indices, extracted from 18FDG PET images on a cohort of patients with30

2
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oesophageal cancer. Results were based on ROC and measurement of the as-

sociated AUC. Authors have found that GLC matrix features (second angular

moment, local contrast, entropy, correlation, homogeneity and dissimilarity) and

GLSZ matrix features (zone length non uniformity, gray level non uniformity)

are relevant to predict patients’ response to treatment. In Hatt et al. [8], 635

1st order features were extracted for each tumour from a cohort of 45 patients

with an oesophageal cancer treated by chemo-radiation therapy. After statisti-

cal analysis based on ROC curves, Kaplan Meier univariate analysis and Cox

multivariate analysis, MTV is presented as a significant prognostic feature to

predict overall survival at 1 year. In Tan et al., [9] 192 1st order and texture40

features were extracted for each tumour from a cohort of 22 patients with an

oesophageal cancer treated by chemo-radiation therapy. AUC from ROC curves

were used to evaluate each feature. Three features resulting from the GLC ma-

trix are predictive of the treatment response: inertia, correlation and cluster

tendency (AUC ≥ 0.76).45

The increasing number of features have led to the development of a new

theory called Radiomics which supposed that quantitative analysis of medical

images through automatic or semi-automatic software can provide more and

better information than a practionner [10] (see Figure 1). However, an in-

creasing number of features is not necessarily synonymous with performance50

improvement. Orlhac et al. [11] have shown that some texture indices are

highly correlated with MTV on 3 types of tumours. In the same way, Tixier

et al. [7] have shown that GLRL matrix features are highly correlated with

GLSZ matrix ones. This redundancy of information is likely to reduce the pre-

diction performances. Therefore, the correlations between features have to be55

considered during the selection process. Because of the high number of studied

features and their nonlinear relationship with patient outcome (i.e. responder

or non-responder), machine learning methods could be of great interest.

Globally, 3 types of feature selection methods can be distinguished [12]:

filter, wrapper and embedded methods. The filter method is based on general60

properties such as the correlation between a feature and the prediction. RELIEF

3
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(a) (b) (c)

Figure 1: Strategy for extracting radiomics data from images from [10]. (a) Experienced

physicians delineate the tumours on images. (b) Features are extracted from the tumour

volume, quantifying tumour intensity, shape and texture. (c) For analysis, the radiomics

features are compared with other data.

4
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(RELevance In Estimating Features) [13] [14] is considered as one of the most

successful filter algorithms, where a margin-based criterion is used to rank the

features. Authors in [15] propose the Feature Assessment by Sliding Thresholds

(FAST) method, based on the AUC generated by sliding threshold values in one65

dimensional feature space.

The wrapper method evaluates the subsets of characteristics and detects

the interaction between features. SFS (Sequential Forward Selection) [16] [17]

and SFFS (Sequential Forward Floating Selection methods) [18] [17] are two

representative wrapper algorithms. To solve the nesting problem of SFS, SFFS70

performs an exclusion step after each inclusion step. More recently, the Hierar-

chical Forward Selection (HFS) [19] was proposed. This approach selects subset

of features based on intrinsic properties of the Support Vector Machine (SVM)

[20] classifier.

Finally, the embedded method combines more closely the feature selection75

strategy, the model creation and evaluation. For example, CART (Classification

And Regression Tree) method has a built-in mechanism to perform feature se-

lection [21]. The expense is the loss of simple interpretability of the interactions

of features. Guyon et al. [22] propose a selection method using SVM based

on Recursive Feature Elimination (RFE). Another example of this approach80

is the Least Absolute Shrinkage and Selection Operator (LASSO) method [23]

constructing a linear model, which penalizes the regression coefficient using a

sparse constraint, shrinking many of them to zero. Any features which have

non-zero regression coefficients are then selected.

Yet, these methods have not been widely used in the context of PET imaging85

and, generally, it is univariate and multivariate analyses that are used to study

PET features [1]. From Computed Tomography (CT) images of 464 patients

with a lung cancer, Parmar et al. have extracted 440 features to evaluate

and compare the accuracy of 14 feature selection methods combined with 12

classifiers [24]. The best performances were found with the Random Forest90

algorithm (RF) [25]. The machine learning methods have also been used in

single photon emission computed tomography imaging, Huertas-Fernández et

5
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al. [26] used a SVM classifier to develop a predictive model for Parkinsons

disease.

In this paper, we propose a feature selection strategy in order to define the95

most relevant subsets of features allowing to predict the treatment response and

the patient overall survival. The difficulty comes from the fact that the selection

is performed on a large amount of different types of features (PET and clini-

cal) which are heterogeneous. We don’t have any a priori knowledge about the

efficiency of the studied features. Hence, we first performed a Spearman’s corre-100

lation analysis [27] to group correlated features and to choose the representative

of each group. At the end of this first step, there is still an important number

of features. Thus, we developed a new feature selection strategy based on a Ge-

netic Algorithm (GA) [28] associated to a new multi-parametric fitness function

taking into account a RF misclassification rate, AUC measurement and a spar-105

sity constraint. This new strategy is called GARF. For this study, a database

of 65 patients with an oesophageal cancer is studied. This method is compared

to other feature selection methods (SFS, RFE, HFS and LASSO). This paper

is organised as follows. Section 2 introduces the method developed to extract

characteristics and to perform the feature selection strategy. Section 3 presents110

the experimental results on the patients’ database followed by a discussion in

Section 4.

2. Materials and Method

Our GARF method consists in the selection of the most relevant predictive

and prognostic subsets of features among those previously extracted. Firstly,115

this section presents the database used. Secondly, our feature selection strategy

is presented.

2.1. Image Data

In this retrospective study, data from 65 patients (N) with a locally advanced

oesophageal cancer eligible for chemo radiation therapy are used to evaluate120

6
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Figure 2: PET/CT slice of the chest with a framed esophageal tumour.

the feature selection strategy. Thirteen features are extracted from the pa-

tients’ medical records (Table 1), such as patient’s usual weight, disease stage,

malnutrition evaluation, etc. All patients underwent a pre-treatment 18FDG

PET. All the images come from the same nuclear medicine department on a

PET/CT Biograph Sensation 16 (Siemens, Erlangen, Germany). The voxel size125

is 4× 4× 2mm3. A PET/CT chest slice is given in Figure 2 as example.

Therapeutic response was evaluated one month after the end of treatment by

clinical examination, endoscopy with biopsies and PET/CT imaging. Patients

are separated into 2 categories: those with a Complete metabolic Response

to treatment (CR) and non-responders or with residual disease (NCR). In our130

cohort, 41 patients (62%) are considered as CR, while 24 (38%) are considered

as NCR. These data are used for the predictive study. For the prognostic study,

the Overall Survival (OS) is estimated after a follow-up of 3 years after the end

of treatment. At the end of the follow-up, 16 patients were alive (24%) and 50

had deceased (76%).135

2.2. PET Feature Extraction

Taking into account the specificity of PET images, we proprose to use 45

features (see Table 1) extracted according to the following workflow. Firstly, the

MTV is defined using a contrast-based adaptive threshold algorithm [29]. The

mean MTV is 19.6± 20.5 cm3 (2.5− 141 cm3). From this volume, 19 1st order140

7
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and shape features are extracted such as SVH features [2], COV (Coefficient Of

Variation [30]) or sphericity [31].

Secondly, 26 texture indices are extracted from 3 texture matrices: 10 from

the GLC matrix (averaged over the 13 3D directions [32]), 5 from the GLD

matrix and 11 from the GLSZ matrix. To compute these matrices a linear145

gray-level resampling is applied on the MTV according to [33] (see Equation 1):

I(i) = round (D × SUV(i)) (1)

where I(i) is the new gray level value of voxel i with an initial intensity SUV(i)

and D is the intensity step, set to 0.5.

Finally, these PET image features added to the 13 features extracted from150

the medical record lead to a number Fi = 58 multimodal initial features.

2.3. Feature Selection Strategy

Our feature selection strategy GARF is composed of 2 steps (see Figure 3)

and can be defined as a wrapper method. Firstly, correlated features are elimi-

nated after a Spearman’s rank analysis performed on the 58 features. Secondly,155

the most relevant subsets of features are defined throught a genetic algorithm

[28] with a multi-parametric fitness function based on a random forest classifi-

cation [25], AUC measurement and a sparsity constraint.

2.3.1. Elimination of Correlated Features

As 58 features are extracted, the detection of the most relevant subsets by160

testing each combination is difficult. In order to keep uncorrelated features

and eliminate redundant ones, we propose as a 1st step, a Spearman’s rank

correlation analysis [27] calculating the correlation coefficient ρ such as:

ρ = 1− 6
∑
d2

N(N2 − 1)
(2)

Where N is the number of patients and d the difference between ranks of

two features. Each patient’s feature (such as tumour volume, patient’s age165

or weight) are sort in an ascending order. So, the rank corresponds to their

8
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Kind of features Characteristics

Clinical

Patient age, Patient gender,

Albumin level (g/l), NRI (Nutritional Risk Index), Malnutrition∗,

Patient initial weight (kg), Usual weight (kg), Weight loss (%),

Tumour location (up, mid, low), Histology (ADC or SCC),

TNM stage, World Health Organisation (WHO) stage,

Endoscopic tumour length (cm)

SUVmax, SUVmean, SUVpeak,

First order MTV, Sum of SUV, TLG, Standard Deviation (SD), COV,

statistics Sphericity, Skewness, Kurtosis, Energy, Entropy,

SUV10, SUV90, SUV10-90, V10, V90, V10-90

Texture ∗∗

GLCM [3]: Variance, Energy, Entropy, Correlation, Dissimilarity,

Contrast, Homogeneity, Inverse Differential Moment (IDM),

Cluster Shade (CS), Cluster Tendency (CT)

GLSZM [6]: Short Zone Emphasis (SZE), Long Zone Emphasis (LZE),

Low Gray level Zone Emphasis (LGZE), High Gray-level Zone

Emphasis (HGZE), Short Zone Low Gray-level Emphasis (SZLGE),

Long Zone Low Gray-level Emphasis (LZLGE), Short Zone High

Gray-level Emphasis (SZHGE), Long Zone HighGray-level

Emphasis (LZHGE), Zone Percentage (ZP), Gray Level Non

Uniformity (GLNUz), Zone Length Non Uniformity (ZLNU)

GDLM [5]: Coarseness, Contrast, Busyness, Complexity, Strength

∗ absence if NRI > 97.5, average if 83.5 ≤ NRI ≤ 97.5 and severe if NRI < 83.5

∗∗ Mathematical expression of features in Table 1 of supplemental data from [11]

9
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Figure 3: Feature selection strategy.

position in the sorted list. Features are compared one by one and considered

as significantly correlated if the absolute value of the Spearman’s correlation

coefficient (|ρ|) is higher or equal to 0.8 with a p-value (p) smaller than 5%

[11]. Correlated features are placed in a group verifying these conditions. The170

mean |ρ| value and the associated standard deviation are calculated for each

group. Each correlation group is represented by the feature having the highest

ρ-value compared to other members of its group. The total number of the

selected features by this step, Fnc, is equal to the number of correlation groups.

Uncorrelated features represent groups of single features.175

Among the remaining features in the second step, our feature selection strat-

egy selects the most relevant prognostic and predictive subsets using a random

forest method and a genetic algorithm.

10
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2.3.2. Random Forest Classification

The RF method [25] is a machine learning technique which classifies data180

using decision trees. This method is widely used in many fields with interesting

performances particularly in medical imaging [24]. The principle is to build a

multitude (k) of independent trees built from an initial sample corresponding

to N patients with F studied features. The initial training sample can be

represented by a matrix of size (N,F ). After construction, the forest is used185

for classification creating estimated labels (i.e. label 0 as responder, label 1 for

non-responder). Then, the final labelling of patients is done using a majority

vote from the forest.

Two random processes are used for the forest construction. Firstly, each

tree of the forest is built from a bootstrap sample of k patients randomly picked190

with replacement. It means that a bootstrap can include several times the

same patient’s data. Secondly, from this sample, a decision tree is constructed

as a binary tree. For each tree node, a subset of f features picked randomly

among the F features is defined. f is equal to rounded
√
F [34]. The most

discriminating feature is picked in this subset according to the Gini criterion195

measuring the statistical dispersion [35]. This step is repeated for all nodes

until all the observations are well separated with respect to their belonging

(ground truth). A cross-validation method is used for the evaluation of the

classifier based on a sampling technique. It means that the dataset is divided

into K subsamples. K− 1 are used to build the training samples, while the last200

one is considered as the test sample. This operation is realised K times with

rotation in order to use each subsample as validation set. By comparing truth

and estimated labels, it is possible to calculate accuracy for each test sample.

The accuracy of the model corresponds to the mean and the standard deviation

(SD) of the K computed accuracies.205

2.3.3. Selection of the most relevant subsets of features

The aim of the GA is to converge to a solution minimising the score obtained

by the fitness function, leading to the selection of the most relevant predictive

11
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subset of size m and the most relevant prognostic subset of size n. Thus, a

multi-parametric fitness function is used, based on 3 criteria:210

• Minimisation of the misclassification rate (RFerr) obtained by a random

forest classification evaluated by a K-fold cross validation method with

K = 5,

• Maximisation of the AUC measurement performed after a combination of

features by logistic regression,215

• Minimisation of the number of features using a sparsity constraint [36]

(nbFeat).

According to these criteria the proposed expression of the fitness function,

fi, is:

fi =
nbFeat + α(1−AUC) + βRFerr

α+ β + 1
(3)

The sparsity constraint nbFeat is equal to
Fs × log(Fnc)− log(Fnc)

Fnc × log(Fnc)− log(Fnc)
, where220

Fs is the number of active chromosomes in the studied element. This constraint

is normalised to have the same order of magnitude as the two other criteria. α

and β are weights (∈ [0, 10]) used to regulate the AUC measurement and the

RFerr, respectively.

2.4. Classifier Evaluation Criteria225

The final subsets of features are evaluated by RF classifications associated

with K-fold cross validations (K = 5) and ROC curves. Se and Sp are used to

compare the estimated and known labels according to the following expressions:

Se =
True positive

True positive + False negative
(4)

Sp =
True negative

True negative + False positive
(5)

where True positive corresponds to the number of correct estimations of

positive labels (label 1), True negative to correct estimations of negative label230

12
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(label 0), False negative to wrong estimations of positive labels and False positive

to wrong estimations of negative labels.

3. Experimental Results

3.1. Spearman’s Rank Correlation Analysis

Results of the Spearman’s rank analysis of the 58 initial features, performed235

on the training sample, are given in Table 2. Concerning clinical data, patients’

usual and current weights are correlated (|ρ| > 0.96). Likewise, the albumin

level, the NRI and the malnutrition are highly correlated (|ρ| > 0.84). Only

9 PET images features are uncorrelated: COV, Skewness, Kurtosis, SUV90,

V10, Contrast (GLD matrix), SZE, SZLGE and GLNUz. At the end of this240

correlation analysis, 9 groups of significant correlated features (|ρ| ≥ 0.8, p <

0.05) are identified leading to a 1st selection of Fnc equal to 29/58 features (13

clinical and 16 from images).

3.2. Influence of the Coefficients

The expression of the GA fitness function contains 2 weight parameters α245

and β varying from 0 to 10. To find the optimal α and β-values minimizing

the fitness function, three thousands experiments were done. For the predictive

study, optimal α and β-values are 8 and 5, respectively, while for the prognostic

study, α and β-values are both equal to 5. In Table 3 are given some examples of

the values of the GA fitness function according to several α and β-values, as well250

as the corresponding AUC, RF misclassification rate and sparsity constraint.

3.3. Feature Selection Results

In the 2nd step, the GA parameters are set to 30 chromosomes and 30 gen-

erations. nTrees = 500 decision trees are used to build the RF algorithm in

the GA fitness function. Higher values of nTrees have been tested without any255

significant difference being observed. Figure 4 shows predictive results of the

fitness function according to the generation with the optimal α and β-values.

13
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Table 2: Groups of correlated features with the mean absolute value of the Spearman’s corre-

lation coefficient per group and the associated Standard Deviation (SD). The feature selected

to represent each group for the next step is in bold.

Group Correlated features |ρ|± SD

1 Usual weight - Current weight 0.96

2 NRI - Albumin level - Malnutrition 0.88± 0.04

3 V10-90 - V90 0.96

4 Energy - Entropy 0.99

5 MTV - sumSUV - TLG - Correlation (GLCM) 0.89± 0.03

6 HGZE - SUV10 - Variance - CT - SZHGE - SUVmax 0.91± 0.03

SUVpeak - SUVmean - Complexity - SD - SUV10−90

Contrast (GLCM) - LGZE

7 IDM - Homogeneity - LZE - ZP - Dissimilarity 0.91± 0.03

Energy (GLCM) - LZLGE - LZHGE - Strength

Entropy (GLCM)

8 ZLNU - Cluster Shade (GLCM) 0.81

9 Busyness - Coarseness - Sphericity 0.94± 0.02

14
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ment, RF misclassification rate and sparsity constraint according to several α and β-values.

The best predictive and prognostic results are in bold.

α β fi AUC RFerr (%)
Sparsity

constraint

predictive

0.8 0.8 0.198 0.844 21 0.21

0.1 0.9 0.201 0.793 20 0.21

0.7 0.1 0.214 0.821 19 0.25

0.4 0.6 0.221 0.804 22 0.25

8 5 0.145 0.898 15 0.29

prognostic

1.8 0.4 0.198 0.831 21 0.25

0.4 0.5 0.201 0.821 22 0.21

5 8 0.214 0.821 23 0.25

1 0.3 0.220 0.827 23 0.25

5 5 0.169 0.833 15 0.25

Figure 4: Predictive results of the GA fitness function according to the generation with the

optimal α and β-value (8 and 5). The mean results for each generation are in black and the

best results in grey.

15
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Table 4: Evaluation of the step 1 impact on GARF for the predictive and the prognostic stud-

ies. Nb is the number of selected features and ∆RFerr is the misclassification rate difference

between the methods.

Method Nb RFerr (%) ∆RFerr (%) Se (%) Sp (%)

Predictive*
Without step 1 10 20

-2%
85 71

With step 1 9 18 81 91

Prognostic**
Without step 1 9 25

-5%
85 60

With step 1 8 20 88 72

*α = 8 and β = 5

**α = 5 and β = 5

Nine features are finally selected for the predictive study, it corresponds to

patient usual weight (group 1), patient weight loss, disease histology, N stage,

MTV (group 5), skewness, kurtosys, energy (group 4) and contrast from the260

GLD matrix. For the prognostic study, 8 features are selected, corresponding to

patient age, disease location, stage, WHO stage, NRI (group 2), IDM from the

GLC matrix (group 7), SZE from the GLSZ matrix and HGZE from the GLSZ

matrix (group 6).

3.4. Comparison of Selection Methods265

Firstly, to study the influence of Spearman’s rank correlation analysis a

comparison was done with and without the first step. Results of the evaluated

criteria are given for the 2 methods in Table 4.

Four other feature selection methods are studied to be compared with GARF.

These methods are LASSO [23], SFS [16], HFS [19] and RFE [22]. Both HFS and270

RFE approaches use a SVM classifier to select features. A radial basis function

Gaussian kernel with σ = 1 and C = 1 is used. Like our method, the feature

selection process started from the Fnc uncorrelated features. Furthermore, the

same RF algorithm is used to evaluate these feature selection strategies.

Concerning the predictive study, 12 features are selected by the Lasso ap-275

proach : the patient’s age, the patient’s gender, the patient’s usual weight (group

16
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1), the patient’s weight loss, the location of the tumor, the T stage, the N stage,

the WHO stage, the V10-90 (group 3), the energy of the 1st order (group 4),

the IDM from the GLC matrix (group 7) and the contrast from the GLD ma-

trix. Three features are selected by the HFS method: the MTV (group 5), the280

N stage and the contrast from the GLD matrix. Two features are selected by

the SVM-SFS method: the MTV (group 5) and the IDM from the GLC ma-

trix (group 7). Lastly, 3 features are selected by the RFE method: Kurtosis,

Busyness from the GLD matrix (group 9) and GLNUz from the GLSZ matrix.

Concerning the prognostic study, 9 features are selected by the Lasso ap-285

proach: the patient’s age, the patient’s weight loss, the location of the tumor,

the N stage, the WHO stage, the NRI (group 2), the skewness, the energy of

the 1st order (group 4) and the IDM from the GLC matrix (group 7). Four

features are selected by the HFS method: the MTV (group 5), the NRI (group

2), the IDM from the GLC matrix (group 7) and the contrast from the GLD290

matrix, 3 features selected by the SVM-SFS method: the patient gender, the

MTV (group 5) and the GLNUz from the GLSZ matrix. Lastly, 3 features are

selected by the RFE method: the MTV (group 5), the GLNUz from the GLSZ

matrix and the HGZE from the GLSZ matrix (group 6).

In Table 5 are given results of the evaluation of the different subsets of295

features selected by the 4 studied methods.

Evaluation of the different subsets of features of size Nb obtained by our

method GARF and the 4 others tested methods.

4. Discussion

Excellent performances are obtained by our GARF method with a classifica-300

tion accuracy and an AUC of 82% and 0.823 for the predictive study and 80%

and 0.750 for the prognostic study (see Table 5). These results are consolidated

by the comparison with the 4 other feature selection methods (Lasso, SFS, RFE,

HFS). Our method always shows the most accurate results (see Table 5).

As step 1, a Spearman’s rank correlation analysis is done in order to keep305
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Table 5: Means and standard deviations of the RF classifier misclassification rate, the sen-

sitivity (Se), the specificity (Sp) and AUC evaluated by cross-validation. ∆RFerr is the

misclassification rate difference between our method and the other ones and Nb the size of

subset of studied features.

Method Nb RFerr (%) ∆RFerr Se (%) Sp (%) AUC

Predictive

GARF 9 18±4 / 81±6 91±12 0.823±0.032

SFS 2 26±14 +8% 66±24 92±11 0.736±0.121

HFS 3 26±8 +8% 71±6 87±13 0.723±0.118

RFE 3 38±16 +20% 77±14 75±22 0.712±0.154

Lasso 12 32±14 +14% 75±13 88±11 0.739±0.088

Prognostic

GARF 8 20±7 / 88±15 72±23 0.750±0.108

SFS 3 32±6 +12% 73±24 68±30 0.635±0.133

HFS 4 35±7 +15% 90±10 56±17 0.620±0.048

RFE 3 46±12 +26% 71±19 74±19 0.635±0.091

Lasso 9 31±12 +11% 88±18 76±16 0.760±0.162

uncorrelated features [11]. These correlations can explain different results found

in the literature. For instance, energy and entropy from the GLC matrix which

have similar outcomes in [2], are correlated in our study (group 7). An informa-

tion complementarity between clinical and PET image features is shown by the

fact that none of them are correlated (see Table 2). By comparing results of the310

RF classifications with and without step 1 (see Table 4), the importance of this

step is demonstrated with an improvement for both predictive and prognostic

studies with a ∆RFerr equal to −2% and −5%, respectively. Indeed, no addi-

tional information is provided by correlated features, moreover this redundancy

could mislead the feature selection method. So, the results are improved by the315

removal of redundant features (Fnc = 29/58). Tixier et al. [7] have shown on an

oesophageal cancer database that GLRL matrix features are highly correlated

with GLSZ matrix ones justifying the fact that this matrix is not used in this

study. In this study a threshold value of the Spearman’s correlation coefficient

18
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of 0.8 is used according to Orlhac et al. [11]. It could be interesting to analyse320

the influence of this threshold value on GARF performances.

Concerning the GA fitness function, in both studies, α and β-values are

much higher than 1. It means that their contribution is more important than

the sparsity constraint. For the predictive study, α-value is higher than β-value

(8 versus 5) showing that AUC measurement has an higher contribution than325

the RF misclassification rate. This result is different concerning the prognostic

study because both α and β-values are equal to 5 meaning that these parameters

have the same influence.

Concerning the most relevant features selected, the MTV (group 5) seems

to be important because it is present in 3/5 predictive results (exept LASSO330

and RFE). This confirms the particular interest of this feature in the patient’s

treatment monitoring [1]. Instead, the SUVmax (group 6), which is generally

regarded as an important feature, is not relevant in predictive studies. Con-

cerning the best prognostic features, three methods select the MTV (except our

method and Lasso), while our method selects HGZE corresponding to the same335

group than SUVmax (group 6).

Otherwise, we note the presence of an important part of clinical features

in the GARF predictive (4/9) and prognostic (5/8) subsets. They play an

important role in patient outcome. The fact of combining these clinical features

with PET image features (1st order and texture indices) can improve outcomes.340

These results show that these features brought additional information to clinical

data. We can also assume that it can be difficult to predict long term events from

the PET exams performed before the beginning of the treatment. It could be

also interesting to look at the longitudinal analysis of image features evolution

between the initial PET exam and another performed during the treatment as345

it has already been done in other studies [1], even if it requires performing a

second examination.

GARF has been compared to 4 other standard selection feature strategies

that are well known to achieve great success in feature selection and classifica-

tion. Two of them are wrapper methods (SFS and HFS) and the two others are350
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embedded (LASSO and RFE). Two of the compared methods are deeply asso-

ciated with SVM. Indeed, HFS and RFE use intrinsic properties of the SVM in

their feature selection process. Thus, it is not possible to distinguish between

these methods and SVM, the one that is responsible for high misclassification

rate, but whatever the selection feature strategy used, they were all evaluated355

using the same RF algorithm for comparison purpose. The comparison between

GARF results with those obtained by other studied methods shows that our

strategy is more efficient with a gain of at least 8% for the predictive study and

11% for the prognostic one (see Table 5). Concerning predictive study, the best

results are clearly obtained by our method on all the evaluated criteria: AUC =360

0.823, RFerr=18%, Se=81% and Sp=91%, whereas the second best results are

found with LASSO: AUC = 0.739, RFerr=32%, Se=75% and Sp=88%. Simi-

larly, in the prognostic study, our method shows the best results: AUC=0.750,

RFerr=20%, Se=88% and Sp=72% whereas the others, except the LASSO ap-

proach, are far behind. Indeed, this last have a similar AUC (0.760), Se (88%)365

and Sp (76%), but a worse RFerr (31%). High standard deviation specificity

values obtained in this study by all the methods can be explained by the fact

that the number of patients in the surviving group is small (16/65), making

machine learning more challenging than if the two outcome groups were similar.

5. Conclusion370

To conclude, we have shown that GARF, our feature selection method, im-

proves the outcome prediction compared to other tested methods by at least

8% for predictive study and 11% for the prognostic one. These good results are

confirmed by other evaluation criteria (AUC, sensitivity and specificity). Ma-

chine learning techniques, and particularly RF, provide a useful expertise in the375

selection of subsets of multimodal features.

To further evaluate GARF, it remains necessary to test it on a larger patients

cohort to assess its robustness and also to study the influence of the threshold

value of the Spearman’s correlation coefficient. Moreover, in the future it might

20



Page 22 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

be interesting to test this selection on other types of cancer, such as lung cancer380

and lymphoma.
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