CLINICAL EXPERIENCE IN THE USE OF TRANSIT DOSIMETRY FOR BREAST CANCER TREATMENT

S. Celi¹, P. François PhD, E. Costa, J.L. Dumas PhD, F. Campana MD

Institut Curie, Medical Physics Department, Paris, France

INTRODUCTION

MATERIALS & METHODS

After six years of experience in transit in vivo dosimetry (IVD), routine IVD controls for breast cancer treatments were finally introduced in 2012.

The immediate observation was that *the dose* differences for breast treatments in supine position are worse than other dose differences for similar techniques, including breast treatments in lateral position (see *Figure 3*).

Dosimetrical causes could be ruled out. But manually matching the measured images to the structures contoured on the CT scan resulted in better IVD results (see *Figure 4*).

<u>Machine</u>	<u>Energies</u>	<u>EPID</u>
Clinac 2	6MV, 20MV	AS500 IAS R-arm
Clinac 3 2100C/S	4MV, 10MV	AS500 IAS R-arm
Clinac 5 UNIQUE	6MV	AS500 IAS E-arm
Treatment	Dlawning Cust	

Ireatment Planning System:

Treatment machines by Varian OCS:			Set up and IVD imaging:				
<u>Machine</u>	<u>Energies</u>	<u>EPID</u>	<u>Machine</u>	<u>Set up</u>	<u>Tolerance</u>	<u>IVD</u>	<u>Tolerance</u>
Clinac 2	6MV, 20MV	AS500 IAS2 R-arm	Clinacs 2, 3	S ₀ + weekly	±2mm	S ₁ , S ₂ , S ₃	±7%
Clinac 3 2100C/S	4MV, 10MV	AS500 IAS2 R-arm	Clinac 5	S ₁ , S ₂ , S ₃ + weekly	TSIIIII	S ₄ , S ₅ , S ₆	
Clinac 5 UNIQUE	6MV	AS500 IAS3 E-arm	*S _N : Fraction N Analysis:				

In vivo dosimetry software: EPIgray[®], by DOSIsoft

The breast cancer treatment statistics for 176 patients (1361 controls, one control point) were analyzed. The causes and effects of the observations were investigated.

Figures 1, 2: Example of a breast patient case in EPIgray[®] [supine position, S4]

Eclipse[™] by Varian OCS **Treatment techniques:**

Supine position Lateral position

Field in Field Opposing fields Statistical software: Excel, MATLAB Investigated parameters: 1 Manual image shifts

60

2 Treatment technique

3 EPID in-treatment offset

RESULTS

Statistical analysis of the in vivo dosimetry results (July to November 2013): 2

	Number of patient plans	Average Dose Difference per control (%)
All sites	619	1.53 ±4.30
Lateral Breast treatment	148	0.76 ±3.18
Supine Breast treatment	192	2.39 ±3.36

Lateral (X) shift example (Clinac 5): ① ③

Field	Average shift ± St. dev. (mm)
Tangential, Internal	5.6 ±3.1
Tangential, External	-5.4 ±2.4
Tangential, Internal	-5.4 ±3.9
Tangential, External	4.2 ±4.7
	Field Tangential, Internal Tangential, External Tangential, Internal

Statistical analysis of the performed image shifts on supine treatment IVD images: (1) (2)

Frequency (%)

Figure4: Example of a lateral (X) image shift in EPIgray[®] [CLINAC 5, supine position, S4].

Dose difference per control point P :

 $Diff = \frac{Dose[plan] - Dose[EPIgray]}{Dose[EPIgray]}$ Dose[plan]

Machine		Clinac 2	Clinac 3	Clinac 5
Average dose difference	Before the shift	3.1 ±3.9	2.8 ±4.9	6.6 ±5.4
(%)	After the shift	2.8 ±3.0	1.8 ±3.5	3.6 ±2.9
% of control points out	Before the shift	9.9	19.6	32.9
of tolerance	After the shift	4.7	5.7	6.5
% of images shifted		25%	33%	56%

Image shifts <3mm (%)	17
Shifts involving EPID offset (%)	0
Average EPID offset (mm)	0

Shifted images (%)

55

Longitudinal (Y) shift example (Clinac 2): 13

Field	Average shift ± St. dev. (mm)
Tangential, Internal/External	-6.7 ±9.3
Shifted images (%)	25.4
Image shifts <3mm (%)	15
Shifts involving EPID offset (%)	51
Average EPID offset (mm)	-4.1 ±8.2

Shift (mm) □ X TGI R ■ X TGI L ■ X TGE R ■ X TGE L

Figure 5: Distribution of the lateral image shifts for tangential external and internal fields (TGE, TGI), for the right and left breast, on the CLINAC 5.

Figure 6: Distribution of the longitudinal image shifts and recorded EPID offset, on the CLINAC 2

• For this type of treatment:

Matching the recorded IVD images with structures \Leftrightarrow matching the volume with the recorded equivalent depth

• Different image shift causes:

- → Lateral shifts: Set up error ↓ Tendency to protect the lung !
- Longitudinal shifts: Set up error and EPID offset Asymmetrical fields, matching to an additional lymph node plan, mechanical EPID problems ...

• Set up errors:

→ If set up and IVD imaging planned for the same fraction: optimal to reduce false positive alerts → If not: good opportunity to follow set up errors and rectify/update the set up measures • EPID offset:

now checked and corrected by EPIgray[®]

→ less false positive, and false negative, alerts resulting from voluntary and involuntary offsets.

• Next: Use the IVD system to follow the evolution of the breast and received dose over the course of the treatment => one step closer to adaptive RT!

•Francois, P, Boissard, P, Berger, L, Mazal, A. In vivo dose verification from back projection of a transit dose measurement on the central axis of photon beams. Phys Med 2011; 27:1-10

References

•Williams, M.V., McKenzie, A. Can we afford not to implement in vivo dosimetry? BJR. 2008, 681-684

•Nijsten SM, Mijnheer BJ, Dekker AL, et al. Routine individualized patient dosimetry using electronic portal imaging devices. Radiother Oncol 2007; 83:65-75.

¹ Corresponding author: <u>sofia.celi-sviridiuk@curie.fr</u>

This work was supported by : Together, let's beat institut**Curie** cancer.

