

EP-1762

Physics track: dose measurement and dose calculation

Pre-treatment quality assurance for flattening filter free dynamic arcs: a detector comparison

Contact: parent.laure@iuct-oncopole.fr

Laure Parent¹, Maxime Goubert¹, François Husson²

¹Institut Universitaire du Cancer Toulouse - Oncopole, Ingénierie et physique médicale, Toulouse, France ² Dosisoft S.A., Cachan, France

Objectives/Purpose

Pre-treatment quality assurance (QA) with flattening filter free (FFF) beams is challenging because of the high dose rate and the required spatial resolution as small fields are usually used. Our current clinical practice is to perform pre-treatment QA with a chamber array in a rotational phantom. This study investigates the replacement of this process by an electronic portal imager (EPI) measurement without a phantom in place in order to shorten the QA time on the machine.

Material/Methods

Material

Varian Truebeam linear accelerator delivering 10 MV FFF photon beams (fig.1a).

Varian As1000 EPID at 150 cm source detector distance (fig.1a). 0.39x0.29 mm² resolution.

=> Analysis with Dosisoft EPIbeam sotfware version 1.0.2.2alpha ((fig.1b) PTW Octavius 4D rotational phantom with PTW SRS1000 liquid ionisation detector resolution.

=> Analysis with PTW Verisoft version 7.0 (fig. 2b) Eclipse Varian 13.7 treatment planning system (0.125 cm calculation grid).

EPID measurements

EPID image is converted into dose at 5 cm depth in water and compared with EPIbeam dose calculation computed from Eclipse RT plan.

Octavius 4D measurements

Dose measured by chamber array in rotational phantom is converted into 3D dose distribution and compared with Eclipse phantom dose calculation.

Clinical plans

- chamber array (fig. 2a). 2.5 mm =10 patients treated by strereotactic radiotherapy for hepatic lesions.
 - Representative of our clinical activity in terms of dose and beam size.

Error detection

Introduced errors: leaf position (leaf bank opening, B30 central shift and blockage), leaf collimator rotation and isocentre dose.

Applied to the smallest and largest lesions in clinical plans. (patients 7 and 2).

Dose at the isocentre set to 11 Gy in Octavius in order to avoid dose bias in comparison (only lesion size varies between the

Treatment plans are made of a 180 to 200° conformal dynamic arc.

Dose prescription on 80% isodose.

two patients)

Assessment of effect error clinical dose impact on distribution in Eclipse with Verisoft software.

Figure 1: (a) Truebeam with As1000 EPID software EPIbeam (b) Interface

Figure 2: (a) Octavius 4D (b) Verisoft software interface

Results

Clinical plans

Clinical plans (table 1) covered a wide range of Results for plans with errors are summarized in PTV size (average = 129.5 cm³, minimum = table 2 with 2%-2 mm gamma index criteria 9.8 cm³, maximum = 327.5 cm³) and dose (10% threshold). prescription (average = 11.8 Gy, minimum = 6 For the largest volume (patient 2), Octavius was Gy, maximum =18 Gy) resulting in 1866 MU on more sensitive to collimator rotation and dose

Error detection

Patient	Error type	Eclipse/Eclipse	Eclipse/Oct4D	Eclipse/Epibeam
7	Nono	100	99,3	99,5
2	None	100	100*	99,5
7	±1mm V1	99,1	91,9	99
2	+111111 XI	100	100*	99,5
7	L Junuary V1	76,3	67,6	87,4
2	+2000 X1	100	97.1*	99,5
7	+1mm	79,5	69,2	98,5
2	X1X2	100	99.5*	99,5

average (minimum = 806 MU, maximum = errors. Nevertheless, plan comparison in Eclipse 3072).

Patient	PTV volume (cm3)	Dose/fraction	fraction number	MU	OCTA. 4D	EPIBEAM
1	23,6	18	3	3072	100	98,08
2	327,53	10	5	1616	97,6*	99,5
3	73,3	9	5	1757	98,3	98,57
4	83,76	11	5	1817	100	98,89
5	120,51	18	3	2818	100	99,61
6	27,29	6	5	968	99,9	98,37
7	9,76	11	5	1462	100	99,48
8	218,8	6	5	806	100	99,58
9	251,6	18	3	2697	99,7	99,09
10	159,24	11	5	1649	100	99,27

 Table 1: clinical plan results (* field not entirely covered by array)

2%-2 mm criteria (10% threshold).

shows that EPID control results are closer to those on dose distribution.

The smallest volume (patient 7) is more sensitive to leaf position errors and less on collimator rotation (due to the rounded shape of the lesion). With Octavius, as the lesion is small, covered by array) the number of tested points is small and gamma

/	Doco±2%	100	97	99,2
2	DOSE+270	100	83.6*	99,6
7	Dece 129/	99	91,7	94,5
2	Dose+3%	86,2	70.2*	81,4
7	10mm D20	83,5	85,3	88,5
2	-1011111 850	96,3	99*	97,9
7	Blocage	79,1	83,7	82,8
2	B30	88,3	91.3*	92,3
7	Call: 15º	100	98,9	99,5
2	COIII +5	89,9	93.2*	89,9

Table 2: Error detection results (* field not entirely

index values decreases quickly when errors are A 97% gamma index acceptance present. Both detectors gave similar results to criteria can be used for both Chamber array and portal imager QA process Eclipse calculation, except for the 1 mm leaf detectors with 2%-2 mm criteria gave both gamma values higher than 97% for opening in both direction that was not seen by and 10% threshold. EPIbeam.

Conclusion

EPI QA process for FFF beams is achievable. It is much faster than chamber array process as there is no need for a phantom setup and it provides similar results. Nevertheless regular QA on collimator and gantry position should be performed on the machine as an error on these parameters is not always if not at all detected with EPID. A similar study will have to be performed on 6 MV FFF beams before using EPID images for routine stereotactic plan QA in our institution.