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Abstract

Purpose

In oncology, texture features extracted from positron emission tomography with 18-fluoro-

deoxyglucose images (FDG-PET) are of increasing interest for predictive and prognostic

studies, leading to several tens of features per tumor. To select the best features, the use of

a random forest (RF) classifier was investigated.

Methods

Sixty-five patients with an esophageal cancer treated with a combined chemo-radiation ther-

apy were retrospectively included. All patients underwent a pretreatment whole-body FDG-

PET. The patients were followed for 3 years after the end of the treatment. The response

assessment was performed 1 month after the end of the therapy. Patients were classified as

complete responders and non-complete responders. Sixty-one features were extracted

from medical records and PET images. First, Spearman’s analysis was performed to elimi-

nate correlated features. Then, the best predictive and prognostic subsets of features were

selected using a RF algorithm. These results were compared to those obtained by a Mann-

Whitney U test (predictive study) and a univariate Kaplan-Meier analysis (prognostic study).

Results

Among the 61 initial features, 28 were not correlated. From these 28 features, the best sub-

set of complementary features found using the RF classifier to predict response was

composed of 2 features: metabolic tumor volume (MTV) and homogeneity from the co-

occurrence matrix. The corresponding predictive value (AUC = 0.836 ± 0.105, Se = 82 ± 9%,
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Sp = 91 ± 12%) was higher than the best predictive results found using the Mann-Whitney

test: busyness from the gray level difference matrix (P < 0.0001, AUC = 0.810, Se = 66%,

Sp = 88%). The best prognostic subset found using RF was composed of 3 features: MTV

and 2 clinical features (WHO status and nutritional risk index) (AUC = 0.822 ± 0.059, Se =

79 ± 9%, Sp = 95 ± 6%), while no feature was significantly prognostic according to the

Kaplan-Meier analysis.

Conclusions

The RF classifier can improve predictive and prognostic values compared to the Mann-Whit-

ney U test and the univariate Kaplan-Meier survival analysis when applied to several tens of

features in a limited patient database.

Introduction

In oncology, to diagnose, describe the tumor stage, and monitor the response to therapy,

FDG-PET based on the standard uptake value (SUV) is widely used [1]. Predictive and prog-

nostic studies have already been carried out using image features derived from first-order

statistics, such as MTV or total lesion glycolysis (TLG). In solid tumors, predictive and prog-

nostic values have been found for these features [2].

More recently, new first-order features have been proposed to describe the heterogeneity of

FDG uptake in lesions. For instance, Bundschuh et al. [3] have found that the coefficient of

variation (COV) is an important predictive factor in patients with rectal cancer. El Naqa et al.

[4] have proposed extracting features from the SUV-volume histogram (SVH), such as SUVx

(the minimum SUV of the x% highest SUV) and Vx (the percentage of volume having at least x

% of SUV). These authors have found that features extracted from the gray-level co-occurrence

matrix (GLC matrix) [5] characterizing the intensity relationships between pairs of neighbor-

ing voxels are some of the most important predictive features in cervical cancer. Other texture

matrices have also been proposed in the literature. The gray-level difference matrix (GLD

matrix) [6] characterizes the intensity differences between neighbors and the gray-level run

length (GLRL matrix) [7] and the gray-level size zone (GLSZ matrix) matrices [8], which char-

acterize the range of intensities in a direction or in all directions, respectively. All these fea-

tures, called radiomics features, provide great potential to capture important phenotypic

information, such as intra-tumor heterogeneity and valuable information for personalized

therapy [9]. Nevertheless, one challenge is the establishment of a proper study design to man-

age several tens of characteristics per lesion.

Several studies investigating the prognostic and predictive value of initial FDG-PET fea-

tures in patients with esophageal cancer treated by chemo-radiation therapy (CRT) have been

proposed in the literature [10]–[17]. When MTV is studied, it always appears to be predictive

and prognostic. Moreover, Tixier et al. [17] have found that features derived from GLC, GLD,

and GLSZ matrices are predictive of a complete response (CR).

Because of the high number of studied features and the nonlinear pattern relationships

between features and patient outcome, the mathematical tools used in these studies are not suf-

ficiently powerful. In this context, methods based on machine learning could lead to a better

discriminant power than classical statistics when analyzing several tens of features. These

methods are able to learn from data by selecting a subset of complementary features leading to
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the prediction of patient outcome [18]. Several algorithms have been proposed in the literature

for radiomics applications in computed tomography (CT) [18] [19]. Among them, methods

based on RF algorithms provide promising results.

Many radiomics features can be extracted from data, but they do not necessarily improve

the accuracy of the prediction due to information redundancy. Some are correlated [20] [21].

For instance, Orlhac et al. [22] showed that some texture features are highly correlated with

MTV in 3 types of tumors: metastatic colorectal cancer, non-small cell lung cancer, and breast

cancer. Tixier et al. [17] have shown that GLRL matrix features are highly correlated with

GLSZ matrix features, and, therefore, do not provide complementary information.

In this study, in order to predict treatment response and patient survival based on baseline

FDG-PET images in a database of 65 patients with locally advanced esophageal cancer after

CRT using 61 features extracted per patient. This method was compared to another feature

selection method based on a support vector machine (SVM) as well as to a standard statistical

analysis: the Mann-Whitney U test for predictive study and the univariate Kaplan-Meier anal-

ysis for prognostic study.

Materials and methods

Patient population

Sixty-five patients with 1 lesion histologically proven to be locally advanced esophageal cancer

were included in the study. All procedures performed in this study were conducted according

to the principles expressed in the Declaration of Helsinki. The study was approved as a retro-

spective study by the Henri Becquerel Center Institutional Review Board (number 1506B).

All patient information was de-identified and anonymized prior to analysis. From the clinical

and biological data, 16 features were extracted for each patient and integrated into this study

(Table 1).

Patients underwent FDG-PET with a CT before treatment, at the initial stage, and after

treatment during systematic follow-up (at 1 month and 3 years) or in cases of clinically sus-

pected recurrence (38/65 patients), always at the same institute. They were treated by CRT

between 2006 and 2013 according to the Herskovic scheme [23], including uninterrupted

radiation therapy in the form of external radiation delivered by a 2-field technique of 2 Gy per

fraction per day, 5 sessions per week, for a total of 50 Gy, as well as chemotherapy including

platinum and 5-fluorouracil. The initial tumor staging and location was based on an esophago-

scopy with chest and abdominal CT with contrast, endoscopic ultrasonography, FDG-PET/

CT, and biopsies. After CRT, 14 patients underwent surgery (4 stage II, 8 stage III, and 2 stage

IV).

For the prediction of treatment response, the response assessment included clinical exami-

nation, CT, FDG-PET, and esophagoscopy with biopsies performed 1 month after the end of

treatment. Patients were classified as showing a clinically complete response (CR, 41 patients)

to CRT if no residual tumor was detected on the endoscopy (negative biopsies) and if no locor-

egional or distant disease were identified on CT or via PET evaluation. Of the 41 patients, 24

were alive at the end of their follow-up. Patients were classified as showing a non-complete

response (NCR, 24 patients) if a residual tumor or locoregional or distant disease was detected

or if death occurred. None of the patients were alive 3 years after treatment.

The mean follow-up of the total studied population was 27.6 ± 18 months. The overall sur-

vival (OS) used for the prognostic study was estimated at 3 years after the end of the CRT. At

the end of the follow-up, 24 patients were alive and 41 were dead.
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FDG-PET/CT imaging

The FDG-PET/CT data were acquired on a Biograph1 Sensation 16 Hi-Rez device (Siemens

Medical Solutions, IL, USA). Patients were required to fast for at least 6 hours before imaging.

A total of 5 MBq/kg of FDG was injected after 20 min of rest. Sixty minutes later (±10 min), 6

to 8 bed positions per patient were acquired using a whole-body protocol (3 min per bed posi-

tion). The PET images were reconstructed using Fourier rebinding and attenuation-weighted

ordered subset expectation maximization algorithms. The images were corrected for random

coincidences, scatter, and attenuation. Finally, the FDG-PET images were smoothed with a

Gaussian filter (full width at half maximum = 5 mm). The reconstructed image voxel size was

4 × 4 × 2 mm3.

Feature extraction

Forty-five features were extracted from PET images (see Table 2) according to the following

workflow. First, MTV was defined using a contrast-based adaptive threshold algorithm [24]

on a PLANET Onco workstation (DOSIsoft, Cachan, France). With this tool, it is possible

to select all the volume and avoid empty parts in the final segmentation corresponding to

necrotic tissues. An example of a FDG-PET/CT chest slice and the segmentation of the lesion

Table 1. List of patient features.

Features Number of patients

Demographic

Patient’s age (years)

Median (range) 63 (46-85)

Patient’s gender

Male 54 (83%)

Female 11 (17%)

Clinical

Tumor location

Upper third 18 (28%)

Middle third 26 (40%)

Lower third 21 (32%)

Histology

Adenocarcinoma (ADC) 8 (12%)

Squamous cell carcinoma (SCC) 57 (88%)

Clinical Stage

II 17 (26%)

III 39 (60%)

IV 9 (14%)

Outcomes

3-year survival

Alive 24 (37%)

Dead 41 (63%)

1-month response

Complete (CR) 41 (63%)

Non-complete (NCR) 24 (37%)

Follow-up (month)

Median (range) 23 (6-79)

doi:10.1371/journal.pone.0173208.t001
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are shown in Fig 1. Nineteen 1st order features were extracted based on SUV, MTV, TLG,

COV, SVH, and sphericity [25].

Second, 26 texture indexes were extracted from 3 texture matrices leading to 10 features for

GLC matrix, 5 for GLD matrix, and 11 for GLSZ matrix. To compute these matrices, an abso-

lute linear gray-level resampling was applied on MTV voxels according to [26] and [27]:

RabsðiÞ ¼ roundðD� SUVðiÞÞ ð1Þ

where SUV(i) is the initial SUV of voxel i and Rabs(i) is the new intensity after the absolute

resampling process based on D the intensity step, set to 0.5.

To compute the GLC matrix, 13 matrices were used, 1 for each spatial direction. Then the

matrices were averaged into 1 mean matrix [15]. The mathematical expression of the texture

indexes can be found in [22] for the GLC, GLSZ, and GLD matrices, leading to Fi = 61 initial

features (Table 2).

Proposed feature selection strategy based on RF

The workflow of the feature selection strategy is given Fig 2. To determine predictive and prog-

nostic features, the 61 features were pre-selected to maintain Fu uncorrelated features. Second,

a feature selection was performed using the RF algorithm [28] to maintain the most important

predictive (and prognostic) features. Then, the subset of complementary features with the best

predictive (and prognostic) value was found using RF again.

Table 2. List of the initial features.

Type of features Features

Clinical data Patient’s age, Patient’s gender,

Albumin level (g/l), nutritional risk index (NRI), Malnutrition*,

Patient’s current weight (kg), Usual weight (kg), Weight loss (%),

Tumor location (up, mid, low), Histology (ADC or SCC),

TNM stage, WHO performance status,

Endoscopic tumor length (cm)

1st order statistics SUVmax, SUVmean, SUVpeak, Sum of SUVs (SUVsum)

MTV, TLG, Standard Deviation (SD), COV, Sphericity,

Skewness, Kurtosis, Energy, Entropy,

SUV10, SUV90, SUV10-SUV90, V10, V90, V10-V90

Texture indices** GLCM [5]: Variance, Energy, Entropy, Correlation, Dissimilarity,

Contrast, Homogeneity, Inverse Differential Moment (IDM),

Cluster Shadey, Cluster Tendency

GLSZM [8]: Short Zone Emphasis (SZE), Long Zone Emphasis (LZE),

Low Gray level Zone Emphasis (LGZE), High Gray-level Zone

Emphasis (HGZE), Short Zone Low Gray-level Emphasis (SZLGE),

Long Zone Low Gray-level Emphasis (LZLGE), Short Zone High

Gray-level Emphasis (SZHGE), Long Zone HighGray-level

Emphasis (LZHGE), Zone Percentage (ZP), Gray Level Non

Uniformity (GLNUz), Zone Length Non Uniformity (ZLNU)

GDLM [6]: Coarseness, Contrast, Busyness, Complexity, Strength

*absent if NRI > 97.5, average if 83.5� NRI� 97.5 and severe if NRI < 83.5.

**mathematical expressions of features come from Table 1 of the Supplemental Data from [22]

doi:10.1371/journal.pone.0173208.t002
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For the pre-selection step, a study based on a Spearman’s rank correlation analysis was per-

formed with the Statistics Toolbox of MATLAB (version 2014b, MathWorks, Inc., Natick,

MA, USA) to maintain the uncorrelated features. Features were compared one by one and

considered as significantly correlated if the absolute value of the Spearman’s correlation

coefficient (|ρ|) was higher or equal to 0.8 with a P-value (P) smaller than 5% [22]. Correlated

features satisfying these conditions were placed in the same group. In each group, the repre-

sentative feature was the one corresponding to the most robust with respect to image recon-

struction settings [29].

After this pre-selection, the most relevant features among those remaining were defined

using the RF algorithm. Five hundred decision trees were built leading to the creation of a RF

Fig 1. PET/CT slice of the chest with a segmented esophageal tumor.

doi:10.1371/journal.pone.0173208.g001

Fig 2. Workflow of the feature selection strategy and data analysis.

doi:10.1371/journal.pone.0173208.g002
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classifier. This classifier was created using the Fu uncorrelated features from the 65 patients.

Features were then ranked according to the RF importance coefficient. m1 predictive and n1

prognostic features were selected if their coefficient of importance was higher than 10% of the

highest one. Second, in order to define the best subset of complementary features among the

m1 (and n1) remaining, the construction of several RFs was recursively performed based on

different subsets of features. Each subset was evaluated using an out-of-bag error. The best sub-

set was the one minimizing this error, ultimately leading to the selection of m2 predictive and

n2 prognostic features.

Evaluation and comparisons with other methods

To evaluate our proposed feature selection strategy, a new classification was made based on

the training sample reduced to the m2 predictive (or the n2 prognostic) features. This evalua-

tion was done with 2 types of classifiers, a RF and a SVM classifier. These classifications were

evaluated by comparing ground truth and estimated labels leading to 2 misclassification rates

(RFerr and SVMerr). Because of the small number of observations in the database, a validation

protocol called random permutations was used. This process randomly divides the database

into 2 subsets: two-thirds of the data are used for the training sample and one-third for the test

sample. This process is repeated 10 times, leading to an average and a standard deviation of

performance indices.

To evaluate the interest of this feature selection strategy, results were compared with other

methods. First, the classification was made without any feature selection strategy based on the

Fi initial features. To evaluate the contribution of each step of the proposed selection strategy,

the classification was made using only the pre-selection step (Spearman’s rank correlation

analysis) or only the other step (RF importance coefficients). Finally, results obtained by the

proposed method were compared to those obtained by another feature selection strategy based

on SVM that is called the hierarchical forward selection method (HFS) [30]. This method led

to mHFS predictive and nHFS prognostic features. These subsets were evaluated in the same way

as the proposed method.

Statistical analysis

The workflow of the statistical analysis, calculated using MedCalc software for Windows (ver-

sion 12.7, MedCalc Software, Ostend, Belgium), is shown Fig 2.

First, features selected using RF (m2 or n2) were combined using a RF in order to turn the

subset into 1 feature. The performances of the RF methodology were studied using a receiver

operation characteristic (ROC) methodology [31] leading to an area under the curve (AUC), a

sensitivity (Se) and a specificity (Sp). Furthermore, for the prognostic study, a Kaplan-Meier

analysis was performed leading to median survival, percentage of deaths in each group, and

hazard ratio (HR).

Our RF feature selection strategy was compared to a Mann-Whitney U test (predictive

study) and to a univariate Kaplan-Meier analysis (prognostic study). This comparison was

done on the Fu uncorrelated features (see Fig 2). For the predictive features, relationships

between the response to therapy at 1 month and the features were studied using the Mann-

Whitney U test. A P value less than 5% was considered to be statistically significant, leading to

m0 predictive features. ROC methodology was used to assess feature performances 1 by 1 in

order to differentiate patients (CR and NCR). To assess the prognostic value of features, a

Kaplan-Meier test was used to estimate survival distribution. OS was calculated from the date

of initial diagnosis to the date of death or to the end of the follow-up period. The association

between OS and each feature was performed after a dichotomization process. The most
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discriminating cut-off value allowing for the differentiation of the 2 groups of patients was

selected using ROC methodology. The prognostic value of each feature in terms of OS was

assessed using the log-rank test leading to n0 prognostic features. To avoid false conclusions,

appropriate statistical corrections for the type-I errors were done according to Chalkidou et al.

[32]. For each P-value calculated in both predictive and prognostic studies, a Benjamini-

Hochberg correction for multiple hypotheses testing was applied [33]. Furthermore, for the

prognostic study, a correction of the minimal P values obtained from the optimum cut-off

approach was performed using the Altman formula [34].

A Wilcoxon signed-rank test was performed to study whether the methods were statistically

different, with an alpha risk of 5% (P< 0.05) [35].

Results

From our database, the mean MTV was 19.6 ± 20.5 cm3 (range 2.5-141 cm3) and the mean

SUVmax was 12.3 ± 4.9 (range 3.5-25.6).

Table 3 shows the results of the influence of the different steps of our feature selection strat-

egy. Even if our proposed method gives the best performances for the predictive study, there

was no statistically significant difference between the methods, while for the prognostic study,

our proposed method was statistically different than the 3 other feature selection strategies

(P< 0.05).

Results of the Spearman’s analysis of the 61 initial features are given in Table 4. Concerning

clinical data, the patient’s usual weight and current weight were correlated (|ρ|> 0.96), as well

as the albumin level, the nutritional risk index (NRI) and malnutrition (|ρ|> 0.88). This is due

to the fact that NRI and malnutrition features were obtained from the albumin level. None of

the clinical data were correlated with the other studied features.

Only 8 PET image features were not correlated: V10, SUV80, COV, skewness, kurtosis, SZE,

SZLGE, and GLNUz. At the end of this correlation study, 9 groups of significantly correlated

features (|ρ|� 0.8, P< 0.05) were identified. The patient’s weight, NRI, V10-V90, energy (1st

order), MTV, SUVmax, homogeneity (GLC matrix), busyness (GLD matrix), and ZLNU

(GLSZ matrix) were used as leaders of their correlation groups. This step led to the pre-selec-

tion of Fu/Fi = 28/61 features (13 clinical and 15 from images). Then, classifications using the

proposed feature selection strategy were realized based on these uncorrelated features.

Concerning the prediction of the treatment response, the number of the most important

predictive features found using the coefficient of importance of RF was m1 = 9. Table 5 shows

the ranking and the corresponding coefficient of importance of these features. At the end of

the selection strategy, the best predictive performance was obtained with the following m2 = 2

complementary features: MTV (group 6) and homogeneity (GLC matrix, group 8), leading to

Table 3. : Results of classifications performed without any feature selection, with the proposed method, using only the pre-selection step (Spear-

man’s correlation analysis) or only the selection by RF algorithm (RF importance coefficients).

Study Feature selection RFerr (%) AUCRF Se (%) Sp (%)

Predictive Without 25±7 0.798±0.084 74±10 88±12

Only pre-selection 28±5 0.788±0.074 76±7 85±11

Only selection by RF 30±8 0.745±0.092 62±16 90±14

Proposed method 21±9 0.836±0.105 82±9 91±12

Prognostic Without 34±6 0.677±0.097 78±10 65±22

Only pre-selection 31±10 0.698±0.085 80±15 68±12

Only selection by RF 32±11 0.661±0.135 89±13 54±20

Proposed method 28±5 0.822±0.059 79±9 95±6

doi:10.1371/journal.pone.0173208.t003
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an AUC of 0.836±0.105, a RF misclassification rate of 21±9%, a SVM misclassification rate of

35±6%, a sensitivity of 82±9%, and a specificity of 91±12% (see Table 6). From the Mann-

Whitney U test performed on Fu = 28 features, only m’ = 5 features had a significant P-value

(P< 0.05): the patient’s weight loss, MTV (group 6), energy (1st order), busyness (GLD

matrix) and GLNUz (GLSZ matrix). Table 6 shows the results extracted from the ROC curve

analysis of the corresponding significantly predictive continuous features. The highest AUC

value (0.810) was obtained with busyness (GLDM, group 9). This value is lower than the one

found using RF. The best predictive performances of HFS were obtained with mHFS = 4 fea-

tures. Even if our method gives better performances than HFS, there was no statistically signifi-

cant difference between the 2 methods for the predictive study.

Concerning the prediction of survival, the number of the most important prognostic fea-

tures found with the RF selection strategy was n1 = 8 (Table 5). At the end of the selection strat-

egy, the best prognostic performances were obtained with n2 = 3 complementary features: NRI

(group 2), WHO performance status, and MTV (group 6), which led to an AUC of 0.822

±0.059 (RFerr = 28±5%, SVMerr = 34±5%, Se = 79±9%, Sp = 95±6%; see Table 7). Fig 3 shows

the Kaplan-Meier survival curves based on estimated labels using the RF classifier and the n2

Table 4. Groups of correlated features (clinical, 1st order and texture) created with an absolute thresh-

old value of the Spearman’s correlation coefficient of 0.8. The feature selected to represent each group

for the next step is in bold.

Group Correlated features

1 Patient’s usual weight—Patient’s current weight

2 NRI—Albumin level—Malnutrition

3 V10-V90—V90

4 ZLNU—Cluster Shade (GLCM)

5 Energy (1st order)—Entropy (1st order)

6 MTV—sumSUV—TLG—Correlation (GLCM)

7 SUVmax—SUV10—SUVpeak—SUVmean—SD—SUV10-SUV90—Variance (GLCM)—Cluster

Tendency (GLCM)—HGZE (GLSZM)—LGZE (GLSZM)—Complexity (GLDM)

8 Homogeneity (GLCM)—IDM (GLCM)—Dissimilarity (GLCM)—Energy (GLCM)—Entropy

(GLCM)—Contrast (GLCM)—LZE (GLSZM)—ZP (GLSZM)—LZLGE (GLSZM)—LZHGE

(GLSZM)–Contrast (GLDM)—Strength (GLDM)

9 Busyness (GLDM)—Coarseness (GLDM)—Sphericity

doi:10.1371/journal.pone.0173208.t004

Table 5. Ranking of the most important predictive and prognostic features according to the value of the coefficient of importance (CI) calculated

by the RF algorithm. Correlation group is indicated if necessary. In bold, the features selected during the last step of selection leading to the best subsets of

features.

Rank Predictive features CI Prognostic features CI

m1 = 9 and m2 = 2 n1 = 8 and n2 = 3

1 MTV (group 6) 0.534 NRI (group 2) 0.272

2 GLNUz 0.319 Patient’s age 0.257

3 Busyness (GLDM, group 9) 0.236 WHO performance status 0.200

4 Energy (1st order, group 5) 0.220 Patient’s weight loss 0.155

5 Homogeneity (GLCM, group 8) 0.181 MTV (group 6) 0.149

6 Patient’s weight loss 0.166 Tumor location 0.089

7 Patient’s usual weight (group 1) 0.128 SZE (GLSZM) 0.081

8 WHO performance status 0.114 Energy (1st order, group 5) 0.077

9 Contrast (GLCM) 0.071 - -

doi:10.1371/journal.pone.0173208.t005
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features. The corresponding HR was 2.35. The best prognostic performances of HFS were

obtained with 3 different features. Our proposed method was statistically different than HFS

(P = 0.002). Conversely, no feature was detected as significantly prognostic using the Kaplan-

Meier survival analysis.

Discussion

On the basis of a cohort of 65 patients suffering from esophageal cancer and treated by CRT,

our study shows that an accurate predictive and prognostic value can be found using a RF algo-

rithm. For the predictive study, results obtained with the proposed method (see Tables 3 and 6)

are better than the standard statistics (Mann-Whitney U test and a ROC analysis) and are not

Table 6. Results of the prediction of treatment response using the proposed method based on RF, the HFS method or the Mann-Whitney U test

(p < 0.05). ROC curves were created to obtain sensitivity (Se), specificity (Sp) and AUC.

Features Se Sp AUC RFerr (%) SVMerr Mann-Whitney test

Proposed method (m2 = 2)

Subset of complementary features: 82±9 91±12 0.836±0.105 21±9 35±6 -

- MTV (group 6)

- Homogeneity (GLCM, group 8)

HFS (mHFS = 4)

Subset of complementary features: 77±15 86±15 0.814±0.093 29±12 37±8 -

- Patient’s weight loss

- MTV (group 6)

- Homogeneity (GLCM, group 8)

- Energy (1st order, group 5)

- ZLNU (GLSZM, group 4)

Mann-Whitney U test (m’ = 5)

Busyness (GLDM, group 9) 66 88 0.810 - - < 0.0001

MTV (group 6) 51 100 0.802 - - 0.0001

Patient’s weight loss 61 83 0.737 - - 0.0015

Energy (1st order, group 5) 54 88 0.723 - - 0.0030

GLNUz (GLSZM) 76 75 0.718 - - 0.0037

doi:10.1371/journal.pone.0173208.t006

Table 7. Prognostic results of the different features using the proposed method based on RF, the HFS method or the univariate Kaplan-Meier anal-

ysis (p < 0.05). ROC curves were created to obtain sensitivity (Se), specificity (Sp) and AUC.

Features Se (%) Sp (%) AUC RFerr (%) SVMerr

Proposed method (n2 = 3)

Subset of complementary features: 79±9 95±6 0.822±0.059 28±5 34±5

- NRI (group 2)

- WHO performance status

- MTV (group 6)

HFS (nHFS = 3)

Subset of complementary features: 55±26 74±19 0.561±0.090 45±8 49±8

- T stage

- N stage

- Energy (group 5)

Univariate Kaplan-Meier Analysis (n’ = 0)

None - - - - -

doi:10.1371/journal.pone.0173208.t007
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significantly different than those found with the HFS algorithm. The prognostic study (Tables 3

and 7 and Fig 3) also indicates the good performance of the algorithm. The results are signifi-

cantly better than those obtained with HFS (P = 0.002) and the Kaplan-Meier survival analysis

(no feature was detected as significantly prognostic).

Fig 3. Kaplan-Meier survival curves using the random forest classifier with the best prognostic subset of features defined by the proposed

method.

doi:10.1371/journal.pone.0173208.g003
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The predictive and the prognostic value of radiomics features concerning esophageal cancer

have been studied in the literature in FDG-PET [9] [17] [36]–[40], CT [41] [42] and magnetic

resonance imaging (MRI) (apparent diffusion coefficient from diffusion weighted imaging)

[43]. In other pathologies, some studies have shown that combining 2 imaging modalities can

improve the prediction of radiomics features [44]–[47]. Several authors have also proposed

studying the temporal features extracted from initial and post-treatment FDG-PET images [9]

[36]–[40].

To obtain prognosis and predictive information as soon as possible, most research has

focused only on initial FDG-PET features. A few studies have also investigated this issue.

Giganti et al. [43] have studied the relationship between apparent diffusion coefficient

extracted from MR images and OS in esophageal cancer. In a univariate analysis, this feature

had a prognostic value both on the total population (P = 0.016) and the surgery-only group

(P< 0.001). Tixier et al. [17] have studied the prediction of response to CRT in esophageal

cancer of 38 textural features from pretreatment FDG-PET images on 41 patients using a Krus-

kal-Wallis non-parametric test. They found that tumor textural analysis can provide non-

responder, partial-responder, and complete-responder patient identification with higher sensi-

tivity (76%-92%) than any SUV measurement. Ganeshan et al. [41] studied the prognostic

value of CT features in 21 patients. The authors extracted a large number of features from CT

images modified by different Laplacian of Gaussian spatial band-pass filters. Based on a

Kaplan-Meier survival analysis, uniformity at a coarse filter scale value of 2.5 led to a signifi-

cantly prognostic AUC (AUC = 0.769, P = 0.0112). Kaplan-Meier curves obtained with this

feature were significantly better than with SUV or clinical stage (P = 0.0006 vs P = 0.0032,

P = 0.023, respectively). Finally, a Cox regression analysis showed that coarse uniformity was

an independent prognostic feature (P = 0.039), while the clinical stage was not significant.

Giganti et al. [42] also investigated the association between preoperative texture analysis from

multidetector CT and OS in gastric cancer. Given the number of features (107) and the num-

ber of patients (56), a feature selection was done based on a random survival forest. This study

showed that multidetector CT texture analysis is a promising, non-invasive diagnostic tool to

evaluate the aggressiveness of gastric cancer.

Given the limited number of patients in our database (65), only 45 FDG-PET features were

extracted, while many other features have been proposed in the literature. The chosen features

correspond to those generally studied in the literature [17] [22] [36]. Nevertheless, a larger

patient cohort will help to integrate more FDG-PET, CT, or MRI features. It should also be

noted that our database is composed predominantly of SCC patients (88%). This ratio is of

the same order of magnitude as the database used by Tan et al. [36]. Nevertheless, results can

depend on the initial patient database.

Several methods have been proposed in the literature to reduce the number of features by

eliminating those with an insufficient repeatability and reproducibility [26] [48] [49]. This

strategy is included in the pre-selection step of our feature selection, because for each group,

the representative feature was the one corresponding to the most robust with respect to image

reconstruction settings [29].

Even if pre-selection is performed, the number of uncorrelated features remains high. In

general, a nonlinear relationship exists between a feature and the patient outcome. Further-

more, complementary features can improve the prediction. In this context, methods using

machine learning-based classifiers are mandatory. Among the algorithms proposed in the lit-

erature for radiomic applications, RF has given promising results [18, 19]. To evaluate the per-

formances of our RF algorithm, a comparison was done with a feature selection strategy (HFS)

based on SVM. The results are significantly better with our method than with those obtained

with HFS (P = 0.002 for the prognostic study and was not significant for the predictive study).

Predictive value of initial FDG-PET features using a random forest classifier
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To avoid bias due to the use of the same classifier between the feature selection strategy and

the final evaluation of the method, both our feature selection method and HFS were evaluated

using RF and SVM. Here again, regardless of the classifier used for the evaluation, the best

results were found with our method (see Tables 6 and 7).

For all statistical approaches, when using machine learning, it is better to have a large data-

base. The principle is to perform a partition of training and evaluation data. Unfortunately,

this is generally difficult to obtain from clinical studies. As a surrogate, the same database

for both the training and evaluation process was used [50]. As the number of patients in the

database (65) is only 2.32-fold Fu, a random permutation of 10 iterations was used to avoid

overfitting.

Our proposed selection strategy consists of 2 successive selections, reducing the number of

features used to build the classification model. The first is a Spearman’s rank correlation analy-

sis, which only keeps uncorrelated features for the next step (Fu = 28/61). The second is based

on the RF coefficient of importance. The combination of these 2 steps improves the classifica-

tion performances with respect to the use of only 1 (Table 3).

We have already developed a two steps combination for features selection [51] using a

genetic algorithm for the second step rather than a method based on the coefficient of impor-

tance. This method, called GARF (genetic algorithm based on random forest), was evaluated

on the same database. AUCs were improved using the coefficient of importance with a smaller

number of selected features, if compared to the genetic algorithm (2 in the predictive and 3 in

the prognosis studies against 9 in the predictive and 8 in the prognostic studies for GARF).

Furthermore, GARF results are sensitive to several parameters of the fitness function of the

genetic algorithm leading to optimize these parameters.

During the pre-selection step of our feature selection strategy, a |ρ| threshold value of 0.8

was chosen. Two other threshold values (0.7 and 0.9) were also studied (see Table D in S1 File

and S1 Fig) without showing a significant difference according to the Wilcoxon signed-rank

test. Thus, a value of 0.8 was used as proposed by Orlhac et al. [22]. Most of the correlated fea-

tures in Table 4 are similar to those in [22], but there are differences that can be explained by

the resampling equation used. In [22], a relative resampling equation was used, while we have

used an absolute resampling method as proposed in the literature [26] [52]. Most relative

resampling-based features are highly correlated with MTV for small tumors (less than 10 cm3)

[15], while this correlation is reduced for absolute resampling-based features, but introducing

a strong dependency on SUVmax. A comparison of these 2 resampling approaches has been

done (see Table C in S1 File) showing a statistically significant difference in favor of absolute

resampling on our database (P = 0.04 in the predictive study and P = 0.01 in the prognostic

study).

For the construction of the RF, a value of T = 500 decision trees was chosen. Other values of

T were also studied (see S2 Fig) without showing a significant difference using the Wilcoxon

signed-rank test. However, it is known that increasing the number of trees does not reduce the

classification performance but tends to converge toward good results [28]. According to our

experiments, a value of 500 is a good compromise between the performance of the classifier

and the computation duration.

Even if the initial database is the same, the best complementary features selected by the RF

algorithm may be different from those found for individual features using standard statistics.

With RF, patient classification is performed using a subset of m2 = 2 complementary predictive

features and n2 = 3 prognostic features.

MTV (group 6, Table 6) appears as a relevant feature on both RF and Mann-Whitney U

test predictive studies. This result was also found in the literature in the case of esophageal

cancer treated by CRT [11]–[13]. The coefficient of importance of MTV computed by the RF

Predictive value of initial FDG-PET features using a random forest classifier
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algorithm is the highest (see Table 5), highlighting the relevance of this feature. The corre-

sponding AUC of the Mann-Whitney U test (0.802) is smaller than the one found using a set

of complementary features selected by RF (AUC = 0.836, MTV, and homogeneity). This last

feature is representative of FDG uptake heterogeneity, pointing out the relevance of heteroge-

neity analysis. Homogeneity represents group 8 in which many texture features are linked (see

Table 4).

The prognostic subset of features is composed of 1 image and 2 clinical features (the

patient’s age, the WHO performance status, and MTV), leading to a misclassification rate of

28% and HR of 2.35 (see Fig 3). MTV [10] [14] [16] was already presented as prognostic in

the literature. On the other hand, no additional image features improved the accuracy of the

patient classification. MTV corresponds to the first prognostic image feature in the ranking list

determined by the coefficient of importance from RF, but only in 5th positions in this ranking

list (see Table 5).

Conclusion

Because of the large number of studied features with respect to the number of patients, a RF

algorithm was used to determine the subset of complementary features with the highest pre-

dictive and prognostic values. We have shown that the RF classifier can improve the predictive

and prognostic values compared to the Mann-Whitney U test and the univariate Kaplan-

Meier analysis when applied to several tens of features in a limited patient database. Machine

learning algorithms are promising for the prediction of treatment response and survival when

using several tens of features. Their impact on medical imaging research and clinical routines

still has to be evaluated.

Supporting information

S1 File. Mean, standard diviation (SD), median, 1st and 3rd quartile (Q1, Q3) of absolute PET

texture features (Table A). Parameters of the RF (Table B). Results of RF classification obtained

with two different resampling methods (Table C). Groups of correlated features created with

an absolute threshold value of the Spearman’s correlation coefficient varying from 0.7 to 0.9.

The feature selected to represent each group for the next step is in bold (Table D).
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S1 Fig. Results of the RF classification according to the absolute threshold value of the

Spearman’s correlation coefficient (a) for the predictive study and (b) for the prognostic

study.

(TIF)

S2 Fig. Results of the RF classification according to T the number of trees of the RF (a) for

the predictive study and (b) for the prognostic study.

(TIF)
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Tumor Heterogeneity in 18F-FDG PET/CT for Therapy Response Assessment and Prognosis in

Patients with Locally Advanced Rectal Cancer. J Nucl Med. 2014; 55: 891–897. doi: 10.2967/jnumed.

113.127340 PMID: 24752672

4. El Naqa I, Grisby PW, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches

in PET images for predicting cancer treatment outcomes. Pattern Recogn. 2009; 42: 1162–1171. doi:

10.1016/j.patcog.2008.08.011 PMID: 20161266

5. Haralick RM, Shanmugam K and Dinstein I. Textural Features for Image Classification. IEEE T Syst

Man Cyb. 1973; SMC-3(6): 610–621. doi: 10.1109/TSMC.1973.4309314

6. Amadasun M, King R. Textural features corresponding to textural properties. IEEE T Syst Man Cyb.

1989; 19(5): 1264–1274. doi: 10.1109/21.44046

7. Galloway MM. Texture analysis using gray level run lengths. Comput Computer Graphics and Image

Processing. 1975; 4(2): 172–179. doi: 10.1007/s00774-004-0536-9

8. Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, et al. Texture Indexes and Gray Level Size

Zone Matrix. Application to Cell Nuclei Classification. PRIP. 2009: 140–145.

9. Yip S, Aerts H. Applications and limitations of radiomics. Phys Med Biol. 2016; 61: R150–166. doi: 10.

1088/0031-9155/61/13/R150 PMID: 27269645

10. Lemarignier C, Di Fiore F, Marre C, Hapdey S, Modzelewski R, Gouel P, et al. Pretreatment Metabolic

Tumour Volume Is Predictive of Disease-free Survival and Overall Survival in Patients With Oesopha-

geal Squamous Cell Carcinoma. Eur J Nucl Med Mol Imaging. 2014; 41: 2008–2016. doi: 10.1007/

s00259-014-2839-y PMID: 25037871

11. Blom R, Steenbakkers IR, Lammering G, Vliegen R, Belgers EJ, De Jonge C, et al. PET/CT-based met-

abolic Tumour Volume for Response Prediction of Neoadjuvant Chemoradiotherapy in Oesophageal

Carcinoma. Eur J Nucl Med Mol Imaging. 2013; 40: 1500–1506. doi: 10.1007/s00259-013-2468-x

PMID: 23764889

12. Palie O, Michel P, Ménard J-F, Rousseau C, Rio E, Bridji B, et al. The Predictive Value of Treatment

Response Using FDG PET Performed on Day 21 of Chemoradiotherapy in Patients With Oesophageal

Squamous Cell Carcinoma. A Prospective, Multicentre Study (RTEP3). Eur J Nucl Med Mol Imaging.

2013; 40: 1345–1355. doi: 10.1007/s00259-013-2450-7 PMID: 23715903

13. Hatt M, Visvikis D, Pradier O, Cheze-Le Rest C. Baseline 18F-FDG PET Image-derived Parameters for

Therapy Response Prediction in Oesophageal Cancer. Eur J Nucl Med Mol Imaging. 2011; 38: 1595–

1596. doi: 10.1007/s00259-011-1834-9 PMID: 21559979

14. Hatt M, Visvikis D, Albarghach NM, Tixier F, Pradier O, Cheze-Le Rest C. Prognostic Value of 18 F-

FDG PET Image-based Parameters in Oesophageal Cancer and Impact of Tumour Delineation Meth-

odology. Eur J Nucl Med Mol Imaging. 2011; 38: 1191–1202. doi: 10.1007/s00259-011-1755-7 PMID:

21365252

15. Hatt M, Majdoub M, Vallieres M, Tixier F, Cheze-Le Rest C, Groheux D, et al. 18F-FDG PET Uptake

Characterization Through Texture Analysis: Investigating the Complementary Nature of Heterogeneity

and Functional Tumor Volume in a multi-Cancer Site Patient Cohort. J Nucl Med. 2015; 56: 38–44. doi:

10.2967/jnumed.114.144055 PMID: 25500829

16. Hyun SH, Choi JY, Shim YM, Kim K, Lee SJ, Cho YS, et al. Prognostic Value of Metabolic Tumor Vol-

ume Measured by 18F-fluorodeoxyglucose Positron Emission Tomography in Patients With Esoph-

ageal Carcinoma. Ann Surg Oncol. 2010; 17: 115–122. doi: 10.1245/s10434-009-0719-7 PMID:

19826877

17. Tixier F, Cheze-le Rest C, Hatt M, Albarghach NM, Pradier O, Metges JP, et al. Intratumor Heterogene-

ity Characterized by Textural Features on Baseline 18F-FDG PET Images Predicts Response to

Predictive value of initial FDG-PET features using a random forest classifier

PLOS ONE | DOI:10.1371/journal.pone.0173208 March 10, 2017 15 / 17

http://www.ncbi.nlm.nih.gov/pubmed/17204723
http://dx.doi.org/10.1007/s00259-012-2280-z
http://www.ncbi.nlm.nih.gov/pubmed/23151913
http://dx.doi.org/10.2967/jnumed.113.127340
http://dx.doi.org/10.2967/jnumed.113.127340
http://www.ncbi.nlm.nih.gov/pubmed/24752672
http://dx.doi.org/10.1016/j.patcog.2008.08.011
http://www.ncbi.nlm.nih.gov/pubmed/20161266
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1109/21.44046
http://dx.doi.org/10.1007/s00774-004-0536-9
http://dx.doi.org/10.1088/0031-9155/61/13/R150
http://dx.doi.org/10.1088/0031-9155/61/13/R150
http://www.ncbi.nlm.nih.gov/pubmed/27269645
http://dx.doi.org/10.1007/s00259-014-2839-y
http://dx.doi.org/10.1007/s00259-014-2839-y
http://www.ncbi.nlm.nih.gov/pubmed/25037871
http://dx.doi.org/10.1007/s00259-013-2468-x
http://www.ncbi.nlm.nih.gov/pubmed/23764889
http://dx.doi.org/10.1007/s00259-013-2450-7
http://www.ncbi.nlm.nih.gov/pubmed/23715903
http://dx.doi.org/10.1007/s00259-011-1834-9
http://www.ncbi.nlm.nih.gov/pubmed/21559979
http://dx.doi.org/10.1007/s00259-011-1755-7
http://www.ncbi.nlm.nih.gov/pubmed/21365252
http://dx.doi.org/10.2967/jnumed.114.144055
http://www.ncbi.nlm.nih.gov/pubmed/25500829
http://dx.doi.org/10.1245/s10434-009-0719-7
http://www.ncbi.nlm.nih.gov/pubmed/19826877


Concomitant Radiochemotherapy in Esophageal Cancer. J Nucl Med. 2011; 52: 369–378. doi: 10.2967/

jnumed.110.082404 PMID: 21321270

18. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts H. Machine Learning methods for Quantitative

Radiomic Biomarkers. Sci Rep. 2015; 5: 13087. doi: 10.1038/srep13087 PMID: 26278466

19. Raman SP, Chen Y, Schroeder JL, Huang P, Fishman EK. CT Texture Analysis of Renal Masses: Pilot

Study Using Random Forest Classification for Prediction of Pathology. Acad Radiol; 2014; 21(12):

1587–1596. doi: 10.1016/j.acra.2014.07.023 PMID: 25239842

20. Brooks FJ and Grigsby PW. The Effect of Small Tumor Volumes on Studies of Intratumoral Heterogene-

ity of Tracer Uptake. J Nucl Med. 2014; 55(1): 37–42. doi: 10.2967/jnumed.112.116715 PMID:

24263086
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